These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 7248390)
21. Functional assembly of a multi-enzyme methanol oxidation cascade on a surface-displayed trifunctional scaffold for enhanced NADH production. Liu F; Banta S; Chen W Chem Commun (Camb); 2013 May; 49(36):3766-8. PubMed ID: 23535691 [TBL] [Abstract][Full Text] [Related]
22. The solvent effects on the kinetics of bacterial formate dehydrogenase reaction. Demchenko AP; Rusyn OI; Egorov AM; Tishkov VI Biochim Biophys Acta; 1990 Jul; 1039(3):290-6. PubMed ID: 2378888 [TBL] [Abstract][Full Text] [Related]
23. Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD(+)-dependent formate dehydrogenase. Berríos-Rivera SJ; Bennett GN; San KY Metab Eng; 2002 Jul; 4(3):217-29. PubMed ID: 12616691 [TBL] [Abstract][Full Text] [Related]
24. A pH-controlled fed-batch process can overcome inhibition by formate in NADH-dependent enzymatic reductions using formate dehydrogenase-catalyzed coenzyme regeneration. Neuhauser W; Steininger M; Haltrich D; Kulbe KD; Nidetzky B Biotechnol Bioeng; 1998 Nov; 60(3):277-82. PubMed ID: 10099429 [TBL] [Abstract][Full Text] [Related]
25. [The role of histidine residues of formate dehydrogenase from Bacterium sp. 1]. Popov VO; Rodionov KuV ; Egorov AM; Berezin IV Biokhimiia; 1978 Jul; 43(7):1212-21. PubMed ID: 212129 [TBL] [Abstract][Full Text] [Related]
26. Kinetic and chemical mechanisms of yeast formate dehydrogenase. Blanchard JS; Cleland WW Biochemistry; 1980 Jul; 19(15):3543-50. PubMed ID: 6996706 [No Abstract] [Full Text] [Related]
27. Variation of transition-state structure as a function of the nucleotide in reactions catalyzed by dehydrogenases. 2. Formate dehydrogenase. Hermes JD; Morrical SW; O'Leary MH; Cleland WW Biochemistry; 1984 Nov; 23(23):5479-88. PubMed ID: 6391544 [TBL] [Abstract][Full Text] [Related]
28. Engineering the Pichia pastoris methanol oxidation pathway for improved NADH regeneration during whole-cell biotransformation. Schroer K; Peter Luef K; Stefan Hartner F; Glieder A; Pscheidt B Metab Eng; 2010 Jan; 12(1):8-17. PubMed ID: 19716429 [TBL] [Abstract][Full Text] [Related]
29. Study of the role of arginine residues in bacterial formate dehydrogenase. Egorov AM; Tishkov VI; Popov VO; Berezin IV Biochim Biophys Acta; 1981 May; 659(1):141-9. PubMed ID: 7248314 [TBL] [Abstract][Full Text] [Related]
30. Kinetic study of porcine kidney betaine aldehyde dehydrogenase. Figueroa-Soto CG; Valenzuela-Soto EM Biochem Biophys Res Commun; 2000 Mar; 269(2):596-603. PubMed ID: 10708600 [TBL] [Abstract][Full Text] [Related]
31. NADH production from NAD+ with a formate dehydrogenase system involving immobilized cells of a methylotrophic Arthrobacter strain. Nath PK; Izumi Y; Yamada H Enzyme Microb Technol; 1990 Jan; 12(1):28-32. PubMed ID: 1366576 [TBL] [Abstract][Full Text] [Related]
32. Do dynamic effects play a significant role in enzymatic catalysis? A theoretical analysis of formate dehydrogenase. Roca M; Oliva M; Castillo R; Moliner V; Tuñón I Chemistry; 2010 Oct; 16(37):11399-411. PubMed ID: 20715198 [TBL] [Abstract][Full Text] [Related]
33. A theoretical study of the catalytic mechanism of formate dehydrogenase. Castillo R; Oliva M; Martí S; Moliner V J Phys Chem B; 2008 Aug; 112(32):10012-22. PubMed ID: 18646819 [TBL] [Abstract][Full Text] [Related]
34. Application of NAD-dependent polyol dehydrogenases for enzymatic mannitol/sorbitol production with coenzyme regeneration. Parmentier S; Arnaut F; Soetaert W; Vandamme EJ Commun Agric Appl Biol Sci; 2003; 68(2 Pt A):255-62. PubMed ID: 15296174 [TBL] [Abstract][Full Text] [Related]
35. Enzymatic production of D-3-phenyllactic acid by Pediococcus pentosaceus D-lactate dehydrogenase with NADH regeneration by Ogataea parapolymorpha formate dehydrogenase. Yu S; Zhu L; Zhou C; An T; Jiang B; Mu W Biotechnol Lett; 2014 Mar; 36(3):627-31. PubMed ID: 24249102 [TBL] [Abstract][Full Text] [Related]
36. Structural basis for double cofactor specificity in a new formate dehydrogenase from the acidobacterium Granulicella mallensis MP5ACTX8. Fogal S; Beneventi E; Cendron L; Bergantino E Appl Microbiol Biotechnol; 2015 Nov; 99(22):9541-54. PubMed ID: 26104866 [TBL] [Abstract][Full Text] [Related]
37. Stability and reactivity of liposome-encapsulated formate dehydrogenase and cofactor system in carbon dioxide gas-liquid flow. Yoshimoto M; Yamashita T; Yamashiro T Biotechnol Prog; 2010; 26(4):1047-53. PubMed ID: 20730761 [TBL] [Abstract][Full Text] [Related]
39. Optical spectroscopy of nicotinoprotein alcohol dehydrogenase from Amycolatopsis methanolica: a comparison with horse liver alcohol dehydrogenase and UDP-galactose epimerase. Piersma SR; Visser AJ; de Vries S; Duine JA Biochemistry; 1998 Mar; 37(9):3068-77. PubMed ID: 9485460 [TBL] [Abstract][Full Text] [Related]
40. Purification and some of the properties of a novel secondary alcohol dehydrogenase from Alcaligenes eutrophus. Madyastha KM; Gururaja TL Biochem Biophys Res Commun; 1995 Jun; 211(2):540-6. PubMed ID: 7794267 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]