These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 7248423)

  • 21. Corrosion behavior of cast and forged cobalt-based alloys for double-alloy joint endoprostheses.
    Süry P; Semlitsch M
    J Biomed Mater Res; 1978 Sep; 12(5):723-41. PubMed ID: 701305
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The concept of protection potential applied to the corrosion of metallic orthopedic implants.
    Cahoon JR; Bandyopadhya R; Tennese L
    J Biomed Mater Res; 1975 May; 9(3):259-64. PubMed ID: 1176484
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The influence of static stress on the corrosion behavior of 316L stainless steel in Ringer's solution.
    Bundy KJ; Vogelbaum MA; Desai VH
    J Biomed Mater Res; 1986 Apr; 20(4):493-505. PubMed ID: 3700443
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Corrosion on spinal implants.
    Kirkpatrick JS; Venugopalan R; Beck P; Lemons J
    J Spinal Disord Tech; 2005 Jun; 18(3):247-51. PubMed ID: 15905769
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pitting, crevice and galvanic corrosion of REX stainless-steel/CoCr orthopedic implant material.
    Reclaru L; Lerf R; Eschler PY; Blatter A; Meyer JM
    Biomaterials; 2002 Aug; 23(16):3479-85. PubMed ID: 12099292
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of boron addition on injection molded 316L stainless steel: mechanical, corrosion properties and in vitro bioactivity.
    Bayraktaroglu E; Gulsoy HO; Gulsoy N; Er O; Kilic H
    Biomed Mater Eng; 2012; 22(6):333-49. PubMed ID: 23114463
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fretting corrosion resistance and fretting corrosion product cytocompatibility of ferritic stainless steel.
    Xulin S; Ito A; Tateishi T; Hoshino A
    J Biomed Mater Res; 1997 Jan; 34(1):9-14. PubMed ID: 8978647
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Corrosion resistance of Ti-Cu alloy].
    Song YX; Wang SM
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2010 Sep; 45(9):565-8. PubMed ID: 21122454
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of cold working on fatigue behavior of stainless steels used for prothesis: application to the study of wires with small sections.
    Coquillet B; Vincent L; Guiraldenq P
    J Biomed Mater Res; 1979 Jul; 13(4):657-68. PubMed ID: 457707
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multicycle mechanical performance of titanium and stainless steel transpedicular spine implants.
    Pienkowski D; Stephens GC; Doers TM; Hamilton DM
    Spine (Phila Pa 1976); 1998 Apr; 23(7):782-8. PubMed ID: 9563108
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface mechanical properties, corrosion resistance, and cytocompatibility of nitrogen plasma-implanted nickel-titanium alloys: a comparative study with commonly used medical grade materials.
    Yeung KW; Poon RW; Chu PK; Chung CY; Liu XY; Lu WW; Chan D; Chan SC; Luk KD; Cheung KM
    J Biomed Mater Res A; 2007 Aug; 82(2):403-14. PubMed ID: 17295246
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluating the effects of hydroxyapatite coating on the corrosion behavior of severely deformed 316Ti SS for surgical implants.
    Mhaede M; Ahmed A; Wollmann M; Wagner L
    Mater Sci Eng C Mater Biol Appl; 2015 May; 50():24-30. PubMed ID: 25746241
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of simulated inflammation on the corrosion of 316L stainless steel.
    Brooks EK; Brooks RP; Ehrensberger MT
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():200-205. PubMed ID: 27987699
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Corrosion in metal implants embedded in various locations of the body in rats.
    Oron U; Alter A
    Clin Orthop Relat Res; 1984 May; (185):295-300. PubMed ID: 6705393
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of corrosion in Harrington and Luque rods failure.
    Prikryl M; Srivastava SC; Viviani GR; Ives MB; Purdy GR
    Biomaterials; 1989 Mar; 10(2):109-17. PubMed ID: 2706297
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microstructures, mechanical properties, and degradation behaviors of heat-treated Mg-Sr alloys as potential biodegradable implant materials.
    Wang Y; Tie D; Guan R; Wang N; Shang Y; Cui T; Li J
    J Mech Behav Biomed Mater; 2018 Jan; 77():47-57. PubMed ID: 28888933
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metallurgical aspects of surgical implant materials.
    Brettle J; Hughes AN; Jordan BA
    Injury; 1971 Jan; 2(3):225-34. PubMed ID: 5118784
    [No Abstract]   [Full Text] [Related]  

  • 38. Effect of Phase Transformation on Stress Corrosion Behavior of Additively Manufactured Austenitic Stainless Steel Produced by Directed Energy Deposition.
    Ron T; Dolev O; Leon A; Shirizly A; Aghion E
    Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33374460
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of ultrafine grain on tensile behaviour and corrosion resistance of the duplex stainless steel.
    Jinlong L; Tongxiang L; Chen W; Limin D
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():558-63. PubMed ID: 26952459
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cast vs. wrought cobalt-chromium surgical implant alloys.
    Devine TM; Wulff J
    J Biomed Mater Res; 1975 Mar; 9(2):151-67. PubMed ID: 1176476
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.