These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 7248460)

  • 1. Correlations between internal mobility and stability of globular proteins.
    Wüthrich K; Wagner G; Richarz R; Braun W
    Biophys J; 1980 Oct; 32(1):549-60. PubMed ID: 7248460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural characterization by nuclear magnetic resonance of a reactive-site 13carbon-labelled basic pancreatic trypsin inhibitor with the peptide bond Arg-39--Ala-40 cleaved and Arg-39 removed.
    Richarz R; Tschesche H; Wüthrich K
    Eur J Biochem; 1979 Dec; 102(2):563-71. PubMed ID: 527593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ring current effects in the conformation dependent NMR chemical shifts of aliphatic protons in the basic pancreatic trypsin inhibitor.
    Perkins SJ; Wüthrich K
    Biochim Biophys Acta; 1979 Feb; 576(2):409-23. PubMed ID: 427198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nuclear magnetic resonance studies of internal mobility in globular proteins.
    Wüthrich K
    Biochem Soc Symp; 1981; (46):17-37. PubMed ID: 7039621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-dimensional NMR spectroscopy: an application to the study of flexibility of protein molecules.
    Nagayama K
    Adv Biophys; 1981; 14():139-204. PubMed ID: 7015809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution structure and dynamics of PEC-60, a protein of the Kazal type inhibitor family, determined by nuclear magnetic resonance spectroscopy.
    Liepinsh E; Berndt KD; Sillard R; Mutt V; Otting G
    J Mol Biol; 1994 May; 239(1):137-53. PubMed ID: 8196042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 1H nuclear-magnetic-resonance study of the solution conformation of the isoinhibitor K from Helix pomatia.
    Wagner G; Wüthrich K; Tschesche H
    Eur J Biochem; 1978 Sep; 89(2):367-77. PubMed ID: 710398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 1H nuclear-magnetic-resonance studies of the porcine-pancreatic secretory trypsin inhibitor at 270 MHz.
    De Marco A; Menegatti E; Guarneri M
    Eur J Biochem; 1979 Dec; 102(1):185-94. PubMed ID: 520321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Determination and comparative analysis of the conformation of bovine pancreatic trypsin inhibitor and trypsin inhibitors E and K from the data of two-dimensional 1H-NMR spectroscopy].
    Sherman SA; Andrianov AM
    Mol Biol (Mosk); 1985; 19(5):1301-9. PubMed ID: 4079926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Internal mobility of the basic pancreatic trypsin inhibitor in solution: a comparison of NMR spin relaxation measurements and molecular dynamics simulations.
    Smith PE; van Schaik RC; Szyperski T; Wüthrich K; van Gunsteren WF
    J Mol Biol; 1995 Feb; 246(2):356-65. PubMed ID: 7532721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 1H nuclear-magnetic-resonance study of the conformation and the molecular dynamics of the glycoprotein cow-colostrum trypsin inhibitor.
    Wagner G; Wütherich K; Tschesche H
    Eur J Biochem; 1978 May; 86(1):67-76. PubMed ID: 658047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of the aromatic amino acid residues in the globular conformation of the basic pancreatic trypsin inhibitor (BPTI). I. 1H NMR studies.
    Wagner G; DeMarco A; Wüthrich K
    Biophys Struct Mech; 1976 Aug; 2(2):139-58. PubMed ID: 9165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the distribution of internal motions in the basic pancreatic trypsin inhibitor using a large number of internal NMR probes.
    Wagner G
    Q Rev Biophys; 1983 Feb; 16(1):1-57. PubMed ID: 6878622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMR of fd coat protein.
    Cross TA; Opella SJ
    J Supramol Struct; 1979; 11(2):139-45. PubMed ID: 44890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation between the amide proton exchange rates and the denaturation temperatures in globular proteins related to the basic pancreatic trypsin inhibitor.
    Wagner G; Wüthrich K
    J Mol Biol; 1979 May; 130(1):31-7. PubMed ID: 469937
    [No Abstract]   [Full Text] [Related]  

  • 16. Six years of protein structure determination by NMR spectroscopy: what have we learned?
    Wüthrich K
    Ciba Found Symp; 1991; 161():136-45; discussion 145-9. PubMed ID: 1726080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study of the lysyl residues in the basic pancreatic trypsin inhibitor using 1H nuclear magnetic resonance at 360 Mhz.
    Brown LR; De Marco A; Wagner G; Wüthrich K
    Eur J Biochem; 1976 Feb; 62(1):103-7. PubMed ID: 2474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Nuclear magnetic resonance and intramolecular mobility of proteins].
    Fedotov VD
    Mol Biol (Mosk); 1983; 17(3):493-504. PubMed ID: 6877230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conservative mutation Met8 --> Leu affects the folding process and structural stability of squash trypsin inhibitor CMTI-I.
    Zhukov I; Jaroszewski L; Bierzyński A
    Protein Sci; 2000 Feb; 9(2):273-9. PubMed ID: 10716179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein folding kinetics by combined use of rapid mixing techniques and NMR observation of individual amide protons.
    Roder H; Wüthrich K
    Proteins; 1986 Sep; 1(1):34-42. PubMed ID: 2835760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.