BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 7248466)

  • 1. Charge-shift probes of membrane potential: a probable electrochromic mechanism for p-aminostyrylpyridinium probes on a hemispherical lipid bilayer.
    Loew LM; Simpson LL
    Biophys J; 1981 Jun; 34(3):353-65. PubMed ID: 7248466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charge-shift probes of membrane potential. Characterization of aminostyrylpyridinium dyes on the squid giant axon.
    Loew LM; Cohen LB; Salzberg BM; Obaid AL; Bezanilla F
    Biophys J; 1985 Jan; 47(1):71-7. PubMed ID: 3978192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectra, membrane binding, and potentiometric responses of new charge shift probes.
    Fluhler E; Burnham VG; Loew LM
    Biochemistry; 1985 Oct; 24(21):5749-55. PubMed ID: 4084490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for a charge-shift electrochromic mechanism in a probe of membrane potential.
    Loew LM; Scully S; Simpson L; Waggoner AS
    Nature; 1979 Oct; 281(5731):497-9. PubMed ID: 492309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voltage sensitivity of the fluorescent probe RH421 in a model membrane system.
    Clarke RJ; Zouni A; Holzwarth JF
    Biophys J; 1995 Apr; 68(4):1406-15. PubMed ID: 7787026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and characterization of electrochromic membrane probes.
    Loew LM
    J Biochem Biophys Methods; 1982 Aug; 6(3):243-60. PubMed ID: 7130621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic investigations of the potential-sensitive membrane probe RH421.
    Clarke RJ; Schrimpf P; Schöneich M
    Biochim Biophys Acta; 1992 Nov; 1112(1):142-52. PubMed ID: 1329964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical detection of membrane dipole potential: avoidance of fluidity and dye-induced effects.
    Clarke RJ; Kane DJ
    Biochim Biophys Acta; 1997 Jan; 1323(2):223-39. PubMed ID: 9042345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescent probes based on styrylpyridinium derivatives: optical properties and membrane binding.
    Dubur GY; Dobretsov GE; Deme AK; Dubure RR; Lapshin EN; Spirin MM
    J Biochem Biophys Methods; 1984 Dec; 10(3-4):123-34. PubMed ID: 6530506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Charge shift optical probes of membrane potential. Theory.
    Loew LM; Bonneville GW; Surow J
    Biochemistry; 1978 Sep; 17(19):4065-71. PubMed ID: 708694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence emission spectral shift measurements of membrane potential in single cells.
    Kao WY; Davis CE; Kim YI; Beach JM
    Biophys J; 2001 Aug; 81(2):1163-70. PubMed ID: 11463657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescent styryl dyes applied as fast optical probes of cardiac action potential.
    Müller W; Windisch H; Tritthart HA
    Eur Biophys J; 1986; 14(2):103-11. PubMed ID: 3816701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential-modulated fluorescence spectroscopy of zwitterionic and dicationic membrane-potential-sensitive dyes at the 1,2-dichloroethane/water interface.
    Osakai T; Yoshimura T; Kaneko D; Nagatani H; Son SH; Yamagishi Y; Yamada K
    Anal Bioanal Chem; 2012 Aug; 404(3):785-92. PubMed ID: 22744747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane dipole potential as measured by ratiometric 3-hydroxyflavone fluorescence probes: accounting for hydration effects.
    M'Baye G; Shynkar VV; Klymchenko AS; Mély Y; Duportail G
    J Fluoresc; 2006 Jan; 16(1):35-42. PubMed ID: 16400505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, spectra, delivery and potentiometric responses of new styryl dyes with extended spectral ranges.
    Wuskell JP; Boudreau D; Wei MD; Jin L; Engl R; Chebolu R; Bullen A; Hoffacker KD; Kerimo J; Cohen LB; Zochowski MR; Loew LM
    J Neurosci Methods; 2006 Mar; 151(2):200-15. PubMed ID: 16253342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochromic modulation of excited-state intramolecular proton transfer: the new principle in design of fluorescence sensors.
    Klymchenko AS; Demchenko AP
    J Am Chem Soc; 2002 Oct; 124(41):12372-9. PubMed ID: 12371881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Voltage-sensitive fluorescence of amphiphilic hemicyanine dyes in a black lipid membrane of glycerol monooleate.
    Fromherz P; Schenk O
    Biochim Biophys Acta; 1994 May; 1191(2):299-308. PubMed ID: 8172915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasensitive two-color fluorescence probes for dipole potential in phospholipid membranes.
    Klymchenko AS; Duportail G; Mély Y; Demchenko AP
    Proc Natl Acad Sci U S A; 2003 Sep; 100(20):11219-24. PubMed ID: 12972636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of protein-reactive (aminostyryl)pyridinium dyes.
    Stevens AC; Frutos RP; Harvey DF; Brian AA
    Bioconjug Chem; 1993; 4(1):19-24. PubMed ID: 8431508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescent styryl dyes of the RH series affect a potential drop on the membrane/solution boundary.
    Malkov DY; Sokolov VS
    Biochim Biophys Acta; 1996 Jan; 1278(2):197-204. PubMed ID: 8593277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.