These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 7248469)

  • 1. The stress-free shape of the red blood cell membrane.
    Fischer TM; Haest CW; Stöhr-Liesen M; Schmid-Schönbein H; Skalak R
    Biophys J; 1981 Jun; 34(3):409-22. PubMed ID: 7248469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elastic behavior of a red blood cell with the membrane's nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion.
    Tsubota K; Wada S; Liu H
    Biomech Model Mechanobiol; 2014 Aug; 13(4):735-46. PubMed ID: 24104211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The deformation of an erythrocyte under the radiation pressure by optical stretch.
    Liu YP; Li C; Liu KK; Lai AC
    J Biomech Eng; 2006 Dec; 128(6):830-6. PubMed ID: 17154682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilization of erythrocyte shape by a chemical increase in membrane shear stiffness.
    Haest CW; Fischer TM; Plasa G; Deuticke B
    Blood Cells; 1980; 6(3):539-53. PubMed ID: 7397401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. What is red cell deformability?
    Schmid-Schönbein H; Gaehtgens P
    Scand J Clin Lab Invest Suppl; 1981; 156():13-26. PubMed ID: 6948373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Does diamide treatment of intact human erythrocytes cause a loss of phospholipid asymmetry?
    Franck PF; Op den Kamp JA; Roelofsen B; van Deenen LL
    Biochim Biophys Acta; 1986 May; 857(1):127-30. PubMed ID: 3964704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Red cell extensional recovery and the determination of membrane viscosity.
    Hochmuth RM; Worthy PR; Evans EA
    Biophys J; 1979 Apr; 26(1):101-14. PubMed ID: 262407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A spin-label study of the correlation between stomatocyte formation and membrane fluidization of erythrocytes.
    Noji S; Takahashi T; Kon H
    Biochem Pharmacol; 1982 Oct; 31(20):3173-80. PubMed ID: 6816240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid monolayer expansion by calcium-chlorotetracycline at the air/water interface and, as inferred from cell shape changes, in the human erythrocyte membrane.
    Riquelme G; Jaimovich E; Lingsch C; Behn C
    Biochim Biophys Acta; 1982 Jul; 689(2):219-29. PubMed ID: 7115708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elastic energy of curvature-driven bump formation on red blood cell membrane.
    Waugh RE
    Biophys J; 1996 Feb; 70(2):1027-35. PubMed ID: 8789121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcellular cross bonding of the red blood cell membrane.
    Fischer TM
    Biochim Biophys Acta; 1986 Oct; 861(2):277-86. PubMed ID: 3756160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Affinity of red blood cell membrane for particle surfaces measured by the extent of particle encapsulation.
    Evans E; Buxbaum K
    Biophys J; 1981 Apr; 34(1):1-12. PubMed ID: 7213927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microscopic photometric quantification of stiffness and relaxation time of red blood cells in a flow chamber.
    Artmann GM
    Biorheology; 1995; 32(5):553-70. PubMed ID: 8541524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermoelasticity of red blood cell membrane.
    Waugh R; Evans EA
    Biophys J; 1979 Apr; 26(1):115-31. PubMed ID: 262408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bending undulations and elasticity of the erythrocyte membrane: effects of cell shape and membrane organization.
    Zeman K; Engelhard H; Sackmann E
    Eur Biophys J; 1990; 18(4):203-19. PubMed ID: 2364914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical properties of the human red blood cell membrane at -15 degrees C.
    Thom F
    Cryobiology; 2009 Aug; 59(1):24-7. PubMed ID: 19362084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane skeletal protein structure and interactions in human erythrocytes after their treatment with diamide and calcium.
    Kumar J; Gupta CM
    Indian J Biochem Biophys; 1992 Apr; 29(2):123-7. PubMed ID: 1398703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detachment of agglutinin-bonded red blood cells. III. Mechanical analysis for large contact areas.
    Berk D; Evans E
    Biophys J; 1991 Apr; 59(4):861-72. PubMed ID: 2065190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane skeletal dynamics: role in modulation of red cell deformability, mobility of transmembrane proteins, and shape.
    Sheetz MP
    Semin Hematol; 1983 Jul; 20(3):175-88. PubMed ID: 6353589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amphiphile induced echinocyte-spheroechinocyte transformation of red blood cell shape.
    Iglic A; Kralj-Iglic V; Hägerstrand H
    Eur Biophys J; 1998; 27(4):335-9. PubMed ID: 9691462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.