These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 7248473)

  • 1. Transport across homoporous and heteroporous membranes in nonideal, nondilute solutions. I. Inequality of reflection coefficients for volume flow and solute flow.
    Friedman MH; Meyer RA
    Biophys J; 1981 Jun; 34(3):535-44. PubMed ID: 7248473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport across homoporous and heteroporous membranes in nonideal, nondilute solutions. II. Inequality of phenomenological and tracer solute permeabilities.
    Friedman MH; Meyer RA
    Biophys J; 1981 Jun; 34(3):545-57. PubMed ID: 7248474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Theoretical analysis of the membrane transport non-homogeneous non-electrolyte solutions: influence of thermodynamic forces on thickness of concentration boundary layers for binary solutions].
    Slezak A; Grzegorczyn S
    Polim Med; 2007; 37(2):67-79. PubMed ID: 17957950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Net fluid absorption under membrane transport models of peritoneal dialysis.
    Vonesh EF; Rippe B
    Blood Purif; 1992; 10(3-4):209-26. PubMed ID: 1308685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dilute solution approximation and generalization of the reflection coefficient method of describing volume and solute flows.
    Mikulecky DC
    Biophys J; 1973 Sep; 13(9):994-9. PubMed ID: 4733703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osmotic transport across cell membranes in nondilute solutions: a new nondilute solute transport equation.
    Elmoazzen HY; Elliott JA; McGann LE
    Biophys J; 2009 Apr; 96(7):2559-71. PubMed ID: 19348741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Network form of the Kedem-Katchalsky equations for ternary non-electrolyte solutions. 2. Evaluation of Lij Peusner's coefficients for polymeric membrane].
    Batko KM; Slezak-Prochazka I; Slezak A
    Polim Med; 2013; 43(2):103-9. PubMed ID: 24044290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Network form of the Kedem-Katchalsky equations for ternary non-electrolyte solutions. 6. Evaluation of Kij Peusner's coefficients for polymeric membrane].
    Batko KM; Slęzak-Prochazka I; Slęzak A
    Polim Med; 2013; 43(4):277-95. PubMed ID: 24596042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation the reflection coefficient of polymeric membrane in concentration polarization conditions.
    Batko K; Slezak-Prochazka I; Slezak A
    Polim Med; 2013; 43(1):11-9. PubMed ID: 23808191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osmotic, diffusive and convective volume and solute flows of ionic solutions through a horizontally mounted polymeric membrane.
    Jasik-Slezak J; Grzegorczyn S; Slezak A
    Polim Med; 2007; 37(3):31-46. PubMed ID: 18251203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Membrane transport of non-homogeneous non-electrolyte solutions: on role of volume flows in creation of concentration boundary layers in binary solutions].
    Slezak A
    Polim Med; 2006; 36(4):37-42. PubMed ID: 17402231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Network form of the Kedem-Katchalsky equations for ternary non-electrolyte solutions. 1. Evaluation of Rij Peusner's coefficients for polymeric membrane].
    Batko KM; Slezak-Prochazka I; Slezak A
    Polim Med; 2013; 43(2):93-102. PubMed ID: 24044289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Network form of the Kedem-Katchalsky equations for ternary non-electrolyte solutions. 4. Evaluation of Wij Peusner's coefficients for polymeric membrane].
    Batko KM; Slęzak-Prochazka I; Slęzak A
    Polim Med; 2013; 43(4):241-56. PubMed ID: 24596040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solute concentration effect on osmotic reflection coefficient.
    Adamski RP; Anderson JL
    Biophys J; 1983 Oct; 44(1):79-90. PubMed ID: 6626681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Network form of the Kedem-Katchalsky equations for ternary non-electrolyte solutions 7. Evaluation of Sij Peusner's coefficients for polymeric membrane].
    Batko KM; Ślęzak-Prochazka I; Ślęzak A
    Polim Med; 2014; 44(1):39-49. PubMed ID: 24918655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On equations for combined convective and diffusive transport of neutral solute across porous membranes.
    Bresler EH; Groome LJ
    Am J Physiol; 1981 Nov; 241(5):F469-76. PubMed ID: 7304743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Nonequilibrium thermodynamics model equations of the volume flow through double-membrane system with concentration polarization].
    Slezak A
    Polim Med; 2010; 40(1):15-24. PubMed ID: 20446525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Network form of the Kedem-Katchalsky equations for ternary non-electrolyte solutions. 3. Evaluation of Hij Peusner's coefficients for polymeric membrane].
    Batko KM; Slezak-Prochazka I; Slezak A
    Polim Med; 2013; 43(2):111-8. PubMed ID: 24044291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffusive and convective solute transport through hemodialysis membranes: a hydrodynamic analysis.
    Langsdorf LJ; Zydney AL
    J Biomed Mater Res; 1994 May; 28(5):573-82. PubMed ID: 7517941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of osmotic flow in porous membranes.
    Anderson JL; Malone DM
    Biophys J; 1974 Dec; 14(12):957-82. PubMed ID: 4429773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.