These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 7248474)

  • 1. Transport across homoporous and heteroporous membranes in nonideal, nondilute solutions. II. Inequality of phenomenological and tracer solute permeabilities.
    Friedman MH; Meyer RA
    Biophys J; 1981 Jun; 34(3):545-57. PubMed ID: 7248474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport across homoporous and heteroporous membranes in nonideal, nondilute solutions. I. Inequality of reflection coefficients for volume flow and solute flow.
    Friedman MH; Meyer RA
    Biophys J; 1981 Jun; 34(3):535-44. PubMed ID: 7248473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical analysis of net tracer flux due to volume circulation in a membrane with pores of different sizes. Relation to solute drag model.
    Patlak CS; Rapoport SI
    J Gen Physiol; 1971 Feb; 57(2):113-24. PubMed ID: 5543414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Theoretical analysis of the membrane transport non-homogeneous non-electrolyte solutions: influence of thermodynamic forces on thickness of concentration boundary layers for binary solutions].
    Slezak A; Grzegorczyn S
    Polim Med; 2007; 37(2):67-79. PubMed ID: 17957950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osmotic transport across cell membranes in nondilute solutions: a new nondilute solute transport equation.
    Elmoazzen HY; Elliott JA; McGann LE
    Biophys J; 2009 Apr; 96(7):2559-71. PubMed ID: 19348741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solute flux coupling in a homopore membrane.
    Van Bruggen JT; Boyett JD; van Bueren AL; Galey WR
    J Gen Physiol; 1974 Jun; 63(6):639-56. PubMed ID: 4829523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of solute permeability and rejection characteristics of normal and flux cellulose haemodialysis membranes.
    Klein E; Holland FF; Eberle K
    Proc Eur Dial Transplant Assoc; 1979; 16():198-204. PubMed ID: 548981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane transport of the non-homogeneous non-electrolyte solutions: mathematical model based on the Kedem-Katchalsky and Rayleigh equations.
    Slezak A
    Polim Med; 2007; 37(1):57-66. PubMed ID: 17703724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Part of the concentrations boundary layers in creations the electrical properties of cell containing two polymeric membranes and binary electrolyte solutions].
    Werner H; Slezak A
    Polim Med; 2007; 37(4):3-19. PubMed ID: 18572875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Net fluid absorption under membrane transport models of peritoneal dialysis.
    Vonesh EF; Rippe B
    Blood Purif; 1992; 10(3-4):209-26. PubMed ID: 1308685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicted permeability parameters of human ovarian tissue cells to various cryoprotectants and water.
    Devireddy RV
    Mol Reprod Dev; 2005 Mar; 70(3):333-43. PubMed ID: 15625698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osmotic, diffusive and convective volume and solute flows of ionic solutions through a horizontally mounted polymeric membrane.
    Jasik-Slezak J; Grzegorczyn S; Slezak A
    Polim Med; 2007; 37(3):31-46. PubMed ID: 18251203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The coupling of solute fluxes in membranes.
    Galey WR; Van Bruggen JT
    J Gen Physiol; 1970 Feb; 55(2):220-42. PubMed ID: 5413079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of heteroporosity on flux equations for membranes.
    Wendt RP; Mason EA; Bresler EH
    Biophys Chem; 1976 May; 4(3):237-47. PubMed ID: 949525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osmosis and solute-solvent drag: fluid transport and fluid exchange in animals and plants.
    Hammel HT; Schlegel WM
    Cell Biochem Biophys; 2005; 42(3):277-345. PubMed ID: 15976460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time evolution of NaCl flux through the microbial cellulose membrane with concentration polarization.
    Grzegorczyn S; Michalska-Małecka K; Slezak A
    Polim Med; 2008; 38(2):11-20. PubMed ID: 18810983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developing Kedem-Katchalsky equations of the transmembrane transport for binary nonhomogeneous non-electrolyte solutions.
    Slezak A; Jarzyńska M
    Polim Med; 2005; 35(1):15-20. PubMed ID: 16050073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Membrane transport of non-homogeneous non-electrolyte solutions: on role of volume flows in creation of concentration boundary layers in binary solutions].
    Slezak A
    Polim Med; 2006; 36(4):37-42. PubMed ID: 17402231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport of non-electrolyte solutions through membrane with concentration polarization.
    Grzegorczyn S; Jasik-Slezak J; Michalska-Małecka K; Slezak A
    Gen Physiol Biophys; 2008 Dec; 27(4):315-21. PubMed ID: 19202206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of concentration boundary layers on passive solute flows in a system of two polymeric membranes positioned in vertical planes.
    Slezak A; Jasik-Slezak J; Dworecki K
    Polim Med; 2003; 33(4):43-64. PubMed ID: 15058112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.