These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 7250120)

  • 61. Pyrenesulfonyl azide: a covalent probe permitting in vitro desensitization of labeled acetylcholine-rich membrane fragments from Torpedo californica.
    Gonzalez-Ros JM; Sator V; Calvo-Fernandez P; Martinez-Carrion M
    Biochem Biophys Res Commun; 1979 Mar; 87(1):214-20. PubMed ID: 454399
    [No Abstract]   [Full Text] [Related]  

  • 62. The effects of acute and chronic botulinum toxin treatment on receptor number, receptor distribution and tissue sensitivity in rat diaphragm.
    Simpson LL
    J Pharmacol Exp Ther; 1977 Feb; 200(2):343-51. PubMed ID: 839441
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Ligand binding sites and subunit interactions of Torpedo californica acetylcholine receptor.
    Witzemann V; Raftery M
    Biochemistry; 1978 Aug; 17(17):3598-604. PubMed ID: 687601
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Characterization of acetylcholine-receptor protein from skeletal muscle.
    Dolly OJ; Barnard EA; Shorr RG
    Biochem Soc Trans; 1977; 5(1):168-70. PubMed ID: 892149
    [No Abstract]   [Full Text] [Related]  

  • 65. Fluidity of the lipids next to the acetylcholine receptor protein of torpedo membrane fragments. Use of amphiphilic reversible spin-labels.
    Bienvenüe A; Rousselet A; Kato G; Devaux PF
    Biochemistry; 1977 Mar; 16(5):841-8. PubMed ID: 191058
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A possible role for phosphorylation of the acetylcholine receptor.
    Carstens ME; Taljaard JJ; Neethling AC
    Med Hypotheses; 1983 Oct; 12(2):185-90. PubMed ID: 6318058
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Selective labeling of alpha-bungarotoxin with fluorescein isothiocyanate and its use for the study of toxin-acetylcholine receptor interactions.
    Garcia-Borron JC; Chinchetru MA; Martinez-Carrion M
    J Protein Chem; 1990 Dec; 9(6):683-93. PubMed ID: 2127357
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Fate of alpha-bungarotoxin bound to acetylcholine receptors of normal and denervated muscle.
    Berg DK; Hall ZW
    Science; 1974 Apr; 184(4135):473-5. PubMed ID: 4819679
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Interaction of the acetylcholine (nicotinic) receptor protein from Torpedo marmorata electric organ with monolayers of pure lipids.
    Popot JL; Demel RA; Sobel A; Van Deenen LL; Changeux JP
    Eur J Biochem; 1978 Apr; 85(1):27-42. PubMed ID: 639821
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Properties of Torpedo electric organ muscarinic receptors.
    Dowdall MJ; Golds PR; Strange PG
    J Physiol (Paris); 1982; 78(4):379-84. PubMed ID: 7182484
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Selective labeling of the delta subunit of the acetylcholine receptor by a covalent local anesthetic.
    Oswald RE; Changeux JP
    Biochemistry; 1981 Dec; 20(25):7166-74. PubMed ID: 6895603
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Distinct protein components from Torpedo marmorata membranes carry the acetylcholine receptor site and the binding site for local anesthetics and histrionicotoxin.
    Sobel A; Heidmann T; Hofler J; Changeux JP
    Proc Natl Acad Sci U S A; 1978 Jan; 75(1):510-4. PubMed ID: 272668
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Subunit structure of the acetylcholine receptor from denervated rat skeletal muscle.
    Froehner SC; Reiness CG; Hall ZW
    J Biol Chem; 1977 Dec; 252(23):8589-96. PubMed ID: 925013
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Subunit structure and peptide mapping of junctional and extrajunctional acetylcholine receptors from rat muscle.
    Nathanson NM; Hall ZW
    Biochemistry; 1979 Jul; 18(15):3392-401. PubMed ID: 465480
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Ligand responses of alpha-bungarotoxin binding sites from skeletal muscle and optic lobe of the chick.
    Wang GK; Molinaro S; Schmidt J
    J Biol Chem; 1978 Dec; 253(23):8507-12. PubMed ID: 711763
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Structural similarities between acetylcholine receptors from fish electric organs and mammalian muscle.
    Gullick WJ; Lindstrom JM
    Biochemistry; 1982 Sep; 21(19):4563-9. PubMed ID: 7138815
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Purification of acetylcholine receptors from the muscle of Electrophorus electricus.
    Lindstrom JM; Cooper JF; Swanson LW
    Biochemistry; 1983 Aug; 22(16):3796-800. PubMed ID: 6351912
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Multiple affinity states for noncompetitive blockers revealed by [3H]phencyclidine binding to acetylcholine receptor rich membrane fragments from Torpedo marmorata.
    Oswald RE; Heidmann T; Changeux JP
    Biochemistry; 1983 Jun; 22(13):3128-36. PubMed ID: 6882741
    [No Abstract]   [Full Text] [Related]  

  • 79. Distribution of alpha-bungarotoxin binding sites over residues 173-204 of the alpha subunit of the acetylcholine receptor.
    Wilson PT; Hawrot E; Lentz TL
    Mol Pharmacol; 1988 Nov; 34(5):643-50. PubMed ID: 3193956
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Affinity-directed cross-linking of membrane-bound acetylcholine receptor polypeptides with photolabile alpha-bungarotoxin derivatives.
    Witzemann V; Muchmore D; Raftery MA
    Biochemistry; 1979 Nov; 18(24):5511-8. PubMed ID: 518854
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.