These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 7250131)
1. Clarification of factors influencing the nature and magnitude of the protonmotive force in bovine heart submitochondrial particles. Branca D; Ferguson SJ; Sorgato MC Eur J Biochem; 1981 May; 116(2):341-6. PubMed ID: 7250131 [TBL] [Abstract][Full Text] [Related]
2. The protonmotive force in bovine heart submitochondrial particles. Magnitude, sites of generation and comparison with the phosphorylation potential. Sorgato MC; Ferguson SJ; Kell DB; John P Biochem J; 1978 Jul; 174(1):237-56. PubMed ID: 212021 [TBL] [Abstract][Full Text] [Related]
3. The effects of partial uncoupling upon the kinetics of ATP synthesis by vesicles from Paracoccus denitrificans and by bovine heart submitochondrial particles. Implications for the mechanism of the proton-translocating ATP synthase. McCarthy JE; Ferguson SJ Eur J Biochem; 1983 May; 132(2):425-31. PubMed ID: 6301834 [TBL] [Abstract][Full Text] [Related]
4. The rate of ATP synthesis by submitochondrial particles can be independent of the magnitude of the protonmotive force. Sorgato MC; Branca D; Ferguson SJ Biochem J; 1980 Jun; 188(3):945-8. PubMed ID: 6258563 [TBL] [Abstract][Full Text] [Related]
6. Measurement of the electrochemical proton gradient in submitochondrial particles. Berry EA; Hinkle PC J Biol Chem; 1983 Feb; 258(3):1474-86. PubMed ID: 6296098 [TBL] [Abstract][Full Text] [Related]
7. THe proton-per-electron stoicheiometry of 'site 1' of oxidative phosphorylation at high protonmotive force is close to 1.5. de Jonge PC; Westerhoff HV Biochem J; 1982 May; 204(2):515-23. PubMed ID: 6288021 [TBL] [Abstract][Full Text] [Related]
8. Effect of the protonmotive force on ATP-linked processes and mobilization of the bound natural ATPase inhibitor in beef heart submitochondrial particles. Klein G; Vignais PV J Bioenerg Biomembr; 1983 Dec; 15(6):347-62. PubMed ID: 18251431 [TBL] [Abstract][Full Text] [Related]
9. A comparison of the phosphorylation potential and electrochemical proton gradient in mung bean mitochondria and phosphorylating sub-mitochondrial particles. Moore AL; Bonner WD Biochim Biophys Acta; 1981 Jan; 634(1):117-28. PubMed ID: 7470495 [TBL] [Abstract][Full Text] [Related]
10. Control of electron transfer in the cytochrome system of mitochondria by pH, transmembrane pH gradient and electrical potential. The cytochromes b-c segment. Papa S; Lorusso M; Izzo G; Capuano F Biochem J; 1981 Feb; 194(2):395-406. PubMed ID: 7305997 [TBL] [Abstract][Full Text] [Related]
11. Hydrolysis of ITP generates a membrane potential in submitochondrial particles. Sorgato MC; Galiazzo F; Valente M; Cavallini L; Ferguson SJ Biochim Biophys Acta; 1982 Aug; 681(2):319-22. PubMed ID: 6214275 [TBL] [Abstract][Full Text] [Related]
12. The protonmotive force in phosphorylating membrane vesicles from Paracoccus denitrificans. Magnitude, sites of generation and comparison with the phosphorylation potential. Kell DB; John P; Ferguson SJ Biochem J; 1978 Jul; 174(1):257-66. PubMed ID: 212022 [TBL] [Abstract][Full Text] [Related]
13. Partial uncoupling, or inhibition of electron transport rate, have equivalent effects on the relationship between the rate of ATP synthesis and proton-motive force in submitochondrial particles. Catia Sorgato M; Lippe G; Seren S; Ferguson SJ FEBS Lett; 1985 Feb; 181(2):323-7. PubMed ID: 2982663 [TBL] [Abstract][Full Text] [Related]
14. Thermodynamics of the electrochemical proton gradient in bovine heart submitochondrial particles. Bashford CL; Thayer WS J Biol Chem; 1977 Dec; 252(23):8459-63. PubMed ID: 21873 [TBL] [Abstract][Full Text] [Related]
15. The nature of controlled respiration and its relationship to protonmotive force and proton conductance in blowfly flight-muscle mitochondria. Johnson RN; Hansford RG Biochem J; 1977 May; 164(2):305-22. PubMed ID: 195584 [TBL] [Abstract][Full Text] [Related]
16. The phosphorylation potential generated by respiring bovine heart submitochondrial particles. Ferguson SJ; Sorgato MC Biochem J; 1977 Nov; 168(2):299-303. PubMed ID: 202265 [TBL] [Abstract][Full Text] [Related]
17. Characterisation of membrane vesicles from Paracoccus denitrificans and measurements of the effect of partial uncoupling on their thermodynamics of oxidative phosphorylation. McCarthy JE; Ferguson SJ Eur J Biochem; 1983 May; 132(2):417-24. PubMed ID: 6301833 [TBL] [Abstract][Full Text] [Related]
18. The electrogenic nature of ADP/ATP transport in inside-out submitochondrial particles. Villiers C; Michejda JW; Block M; Lauquin GJ; Vignais PV Biochim Biophys Acta; 1979 Apr; 546(1):157-70. PubMed ID: 36139 [No Abstract] [Full Text] [Related]
19. Energetics of ATP-driven reverse electron transfer from cytochrome c to fumarate and from succinate to NAD in submitochondrial particles. Scholes TA; Hinkle PC Biochemistry; 1984 Jul; 23(14):3341-5. PubMed ID: 6087893 [TBL] [Abstract][Full Text] [Related]
20. Reversal of oxidative phosphorylation in submitochondrial particles using glucose 6-phosphate and hexokinase as an ATP regenerating system. de Meis L; Grieco MA; Galina A FEBS Lett; 1992 Aug; 308(2):197-201. PubMed ID: 1499730 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]