BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 7250131)

  • 1. Clarification of factors influencing the nature and magnitude of the protonmotive force in bovine heart submitochondrial particles.
    Branca D; Ferguson SJ; Sorgato MC
    Eur J Biochem; 1981 May; 116(2):341-6. PubMed ID: 7250131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The protonmotive force in bovine heart submitochondrial particles. Magnitude, sites of generation and comparison with the phosphorylation potential.
    Sorgato MC; Ferguson SJ; Kell DB; John P
    Biochem J; 1978 Jul; 174(1):237-56. PubMed ID: 212021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of partial uncoupling upon the kinetics of ATP synthesis by vesicles from Paracoccus denitrificans and by bovine heart submitochondrial particles. Implications for the mechanism of the proton-translocating ATP synthase.
    McCarthy JE; Ferguson SJ
    Eur J Biochem; 1983 May; 132(2):425-31. PubMed ID: 6301834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The rate of ATP synthesis by submitochondrial particles can be independent of the magnitude of the protonmotive force.
    Sorgato MC; Branca D; Ferguson SJ
    Biochem J; 1980 Jun; 188(3):945-8. PubMed ID: 6258563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variable proton conductance of submitochondrial particles.
    Sorgato MC; Ferguson SJ
    Biochemistry; 1979 Dec; 18(25):5737-42. PubMed ID: 42433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of the electrochemical proton gradient in submitochondrial particles.
    Berry EA; Hinkle PC
    J Biol Chem; 1983 Feb; 258(3):1474-86. PubMed ID: 6296098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. THe proton-per-electron stoicheiometry of 'site 1' of oxidative phosphorylation at high protonmotive force is close to 1.5.
    de Jonge PC; Westerhoff HV
    Biochem J; 1982 May; 204(2):515-23. PubMed ID: 6288021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of the protonmotive force on ATP-linked processes and mobilization of the bound natural ATPase inhibitor in beef heart submitochondrial particles.
    Klein G; Vignais PV
    J Bioenerg Biomembr; 1983 Dec; 15(6):347-62. PubMed ID: 18251431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of the phosphorylation potential and electrochemical proton gradient in mung bean mitochondria and phosphorylating sub-mitochondrial particles.
    Moore AL; Bonner WD
    Biochim Biophys Acta; 1981 Jan; 634(1):117-28. PubMed ID: 7470495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of electron transfer in the cytochrome system of mitochondria by pH, transmembrane pH gradient and electrical potential. The cytochromes b-c segment.
    Papa S; Lorusso M; Izzo G; Capuano F
    Biochem J; 1981 Feb; 194(2):395-406. PubMed ID: 7305997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrolysis of ITP generates a membrane potential in submitochondrial particles.
    Sorgato MC; Galiazzo F; Valente M; Cavallini L; Ferguson SJ
    Biochim Biophys Acta; 1982 Aug; 681(2):319-22. PubMed ID: 6214275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The protonmotive force in phosphorylating membrane vesicles from Paracoccus denitrificans. Magnitude, sites of generation and comparison with the phosphorylation potential.
    Kell DB; John P; Ferguson SJ
    Biochem J; 1978 Jul; 174(1):257-66. PubMed ID: 212022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Partial uncoupling, or inhibition of electron transport rate, have equivalent effects on the relationship between the rate of ATP synthesis and proton-motive force in submitochondrial particles.
    Catia Sorgato M; Lippe G; Seren S; Ferguson SJ
    FEBS Lett; 1985 Feb; 181(2):323-7. PubMed ID: 2982663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamics of the electrochemical proton gradient in bovine heart submitochondrial particles.
    Bashford CL; Thayer WS
    J Biol Chem; 1977 Dec; 252(23):8459-63. PubMed ID: 21873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The nature of controlled respiration and its relationship to protonmotive force and proton conductance in blowfly flight-muscle mitochondria.
    Johnson RN; Hansford RG
    Biochem J; 1977 May; 164(2):305-22. PubMed ID: 195584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The phosphorylation potential generated by respiring bovine heart submitochondrial particles.
    Ferguson SJ; Sorgato MC
    Biochem J; 1977 Nov; 168(2):299-303. PubMed ID: 202265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterisation of membrane vesicles from Paracoccus denitrificans and measurements of the effect of partial uncoupling on their thermodynamics of oxidative phosphorylation.
    McCarthy JE; Ferguson SJ
    Eur J Biochem; 1983 May; 132(2):417-24. PubMed ID: 6301833
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The electrogenic nature of ADP/ATP transport in inside-out submitochondrial particles.
    Villiers C; Michejda JW; Block M; Lauquin GJ; Vignais PV
    Biochim Biophys Acta; 1979 Apr; 546(1):157-70. PubMed ID: 36139
    [No Abstract]   [Full Text] [Related]  

  • 19. Energetics of ATP-driven reverse electron transfer from cytochrome c to fumarate and from succinate to NAD in submitochondrial particles.
    Scholes TA; Hinkle PC
    Biochemistry; 1984 Jul; 23(14):3341-5. PubMed ID: 6087893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversal of oxidative phosphorylation in submitochondrial particles using glucose 6-phosphate and hexokinase as an ATP regenerating system.
    de Meis L; Grieco MA; Galina A
    FEBS Lett; 1992 Aug; 308(2):197-201. PubMed ID: 1499730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.