These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 7250131)
21. Estimation of H+-translation stoicheiometry of mitochondrial ATPase by comparison of proton-motive forces with clamped phosphorylation potentials in submitochondrial particles. Sorgato MC; Galiazzo F; Panato L; Ferguson SJ Biochim Biophys Acta; 1982 Oct; 682(1):184-8. PubMed ID: 6215943 [TBL] [Abstract][Full Text] [Related]
22. The effect of membrane potential on the redox state of cytochrome b561 in antimycin-inhibited submitochondrial particles. Gopher A; Gutman M J Bioenerg Biomembr; 1980 Dec; 12(5-6):349-67. PubMed ID: 7263619 [TBL] [Abstract][Full Text] [Related]
23. [Reasons causing a lag period in the oxidative phosphorylation process. Isn't ATP an internal uncoupler of ATP synthetase?]. Bronnikov GE; Vinogradova SO; Mezentseva VS; Samoĭlova EV Biofizika; 1999; 44(3):465-73. PubMed ID: 10439862 [TBL] [Abstract][Full Text] [Related]
24. Estimation of the pH gradient and donnan potential in de-energized heart mitochondria. Jung DW; Davis MH; Brierley GP Arch Biochem Biophys; 1988 May; 263(1):19-28. PubMed ID: 3369862 [TBL] [Abstract][Full Text] [Related]
25. Interaction of F1-ATPase, from ox heart mitochondria with its naturally occurring inhibitor protein. Studies using radio-iodinated inhibitor protein. Power J; Cross RL; Harris DA Biochim Biophys Acta; 1983 Jul; 724(1):128-41. PubMed ID: 6223660 [TBL] [Abstract][Full Text] [Related]
26. The binding of 8-anilinonaphthalene-1-sulphonate to a fixed concentration of unenergised and succinate-energised submitochondrial particles. Gains N; Dawson AP Eur J Biochem; 1979 Dec; 102(2):483-7. PubMed ID: 527590 [TBL] [Abstract][Full Text] [Related]
27. The residual protonmotive force in mitochondria after an oxygen pulse. Heinz E; Westerhoff HV; van Dam K Eur J Biochem; 1981 Mar; 115(1):107-13. PubMed ID: 6262076 [TBL] [Abstract][Full Text] [Related]
28. Current-voltage relationships for proton flow through the F0 sector of the ATP-synthase, carbonylcyanide-p-trifluoromethoxyphenylhydrazone or leak pathways in submitochondrial particles. Seren S; Caporin G; Galiazzo F; Lippe G; Ferguson SJ; Sorgato MC Eur J Biochem; 1985 Oct; 152(2):373-9. PubMed ID: 2865136 [TBL] [Abstract][Full Text] [Related]
29. Simultaneous synthesis and hydrolysis of ATP regulated by the inhibitor protein in submitochondrial particles. Beltrán C; Tuena de Gómez-Puyou M; Darszon A; Gómez-Puyou A Eur J Biochem; 1986 Oct; 160(1):163-8. PubMed ID: 3021449 [TBL] [Abstract][Full Text] [Related]
30. Effect of protonmotive force on the relative proton stoichiometries of the mitochondrial proton pumps. Hafner RP; Brand MD Biochem J; 1991 Apr; 275 ( Pt 1)(Pt 1):75-80. PubMed ID: 1708235 [TBL] [Abstract][Full Text] [Related]
31. Elasticity of synthetic phospholipid vesicles and submitochondrial particles during osmotic swelling. Li W; Aurora TS; Haines TH; Cummins HZ Biochemistry; 1986 Dec; 25(25):8220-9. PubMed ID: 3814581 [TBL] [Abstract][Full Text] [Related]
32. Analysis of mechanisms of free-energy coupling and uncoupling by inhibitor titrations: theory, computer modeling and experiments. Petronilli V; Azzone GF; Pietrobon D Biochim Biophys Acta; 1988 Mar; 932(3):306-24. PubMed ID: 2450579 [TBL] [Abstract][Full Text] [Related]
33. Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles. Panov AV; Scaduto RC Arch Biochem Biophys; 1995 Feb; 316(2):815-20. PubMed ID: 7864638 [TBL] [Abstract][Full Text] [Related]
34. Measurement of the membrane potential generated by complex I in submitochondrial particles. Ghelli A; Benelli B; Esposti MD J Biochem; 1997 Apr; 121(4):746-55. PubMed ID: 9163527 [TBL] [Abstract][Full Text] [Related]
35. The use of aurovertin to determine the F1 content of submitochondrial particles and the ATPase complex. Berden JA; Verschoor GJ Biochim Biophys Acta; 1978 Nov; 504(2):278-87. PubMed ID: 152643 [TBL] [Abstract][Full Text] [Related]
36. Oxidative phosphorylation by membrane vesicles from Bacillus alcalophilus. Guffanti AA; Bornstein RF; Krulwich TA Biochim Biophys Acta; 1981 May; 635(3):619-30. PubMed ID: 6165388 [TBL] [Abstract][Full Text] [Related]
37. Spermine binding to submitochondrial particles and activation of adenosine triphosphatase. Solaini G; Tadolini B Biochem J; 1984 Mar; 218(2):495-9. PubMed ID: 6231925 [TBL] [Abstract][Full Text] [Related]
38. Stoichiometry of the H+-ATPase of growing and resting, aerobic Escherichia coli. Kashket ER Biochemistry; 1982 Oct; 21(22):5534-8. PubMed ID: 6293545 [TBL] [Abstract][Full Text] [Related]
39. The interaction of the potential-sensitive molecular probe merocyanine 540 with phosphorylating beef heart submitochondrial particles under equilibrium and time-resolved conditions. Smith JC; Graves JM; Williamson M Arch Biochem Biophys; 1984 Jun; 231(2):430-53. PubMed ID: 6732242 [TBL] [Abstract][Full Text] [Related]
40. Evidence against phosphorylation of ADP by oleoyl phosphate catalyzed by submitochondrial particles. Sharma M; Wang JH Biochem Biophys Res Commun; 1978 Sep; 84(1):144-50. PubMed ID: 728121 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]