These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 7250263)

  • 1. Moving background patterns reveal double-opponency of directionally specific pigeon tectal neurons.
    Frost BJ; Scilley PL; Wong SC
    Exp Brain Res; 1981; 43(2):173-85. PubMed ID: 7250263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contextual influences on the directional responses of tectal cells in pigeons.
    Sun HJ; Zhao J; Southall TL; Xu B
    Vis Neurosci; 2002; 19(2):133-44. PubMed ID: 12385626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Double-opponent-process mechanism underlying RF-structure of directionally specific cells of cat lateral suprasylvian visual area.
    von GrĂ¼nau M; Frost BJ
    Exp Brain Res; 1983; 49(1):84-92. PubMed ID: 6305699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Receptive field properties of single cells in the pigeon's optic tectum during cooling of the 'visual wulst'.
    Leresche N; Hardy O; Jassik-Gerschenfeld D
    Brain Res; 1983 May; 267(2):225-36. PubMed ID: 6307466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of stationary and moving textured backgrounds on the response of visual neurons in toads (Bufo bufo L.).
    Tsai HJ; Ewert JP
    Brain Behav Evol; 1988; 32(1):27-38. PubMed ID: 3142636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. After-effects of moving textured background in motion-sensitive neurons of anuran optic tectum.
    Satou M; Tsai HJ; Shiraishi A; Ueda K
    Brain Res; 1989 Dec; 504(2):320-4. PubMed ID: 2598033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Responses of pigeon vestibulocerebellar neurons to optokinetic stimulation. I. Functional organization of neurons discriminating between translational and rotational visual flow.
    Wylie DR; Kripalani T; Frost BJ
    J Neurophysiol; 1993 Dec; 70(6):2632-46. PubMed ID: 8120603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuronal motion after-response induced in the tectal neurons of toads by moving textured background.
    Tsai HJ
    Brain Behav Evol; 1991; 37(3):161-7. PubMed ID: 2070256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The spatial organization of the excitatory regions in the visual receptive fields of the pigeon's optic tectum.
    Hardy O; Leresche N; Jassik-Gerschenfeld D
    Exp Brain Res; 1982; 46(1):59-68. PubMed ID: 6279426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Edge preference of retinal and tectal neurons in common toads (Bufo bufo) in response to worm-like moving stripes: the question of behaviorally relevant 'position indicators'.
    Tsai HJ; Ewert JP
    J Comp Physiol A; 1987 Aug; 161(2):295-304. PubMed ID: 3114477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep tectal cells in pigeons respond to kinematograms.
    Frost BJ; Cavanagh P; Morgan B
    J Comp Physiol A; 1988 Apr; 162(5):639-47. PubMed ID: 3373454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The processing of object and self-motion in the tectofugal and accessory optic pathways of birds.
    Frost BJ; Wylie DR; Wang YC
    Vision Res; 1990; 30(11):1677-88. PubMed ID: 2288083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single visual neurons code opposing motion independent of direction.
    Frost BJ; Nakayama K
    Science; 1983 May; 220(4598):744-5. PubMed ID: 6836313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural interactions of two moving patterns in the direction and orientation domain in the complex cells of cat's visual cortex.
    Kaji S; Kawabata N
    Vision Res; 1985; 25(6):749-53. PubMed ID: 4024473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual responses of neurons in the nucleus of the basal optic root to stationary stimuli in pigeons.
    Gu Y; Wang Y; Wang SR
    J Neurosci Res; 2002 Mar; 67(5):698-704. PubMed ID: 11891782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 'Real-motion' cells in visual area V2 of behaving macaque monkeys.
    Galletti C; Battaglini PP; Aicardi G
    Exp Brain Res; 1988; 69(2):279-88. PubMed ID: 3345807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of an extraretinal signal by monkey superior colliculus neurons to distinguish real from self-induced stimulus movement.
    Robinson DL; Wurtz RH
    J Neurophysiol; 1976 Jul; 39(4):852-70. PubMed ID: 823306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A neural model of the interaction of tectal columns in prey-catching behavior.
    Arbib MA; Lara R
    Biol Cybern; 1982; 44(3):185-96. PubMed ID: 7115796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of object motion in the ventral part of the medial superior temporal area of the macaque visual cortex.
    Tanaka K; Sugita Y; Moriya M; Saito H
    J Neurophysiol; 1993 Jan; 69(1):128-42. PubMed ID: 8433128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of neonatal enucleation on receptive-field properties of visual neurons in superior colliculus of the golden hamster.
    Rhoades RW; Chalupa LM
    J Neurophysiol; 1980 Mar; 43(3):595-611. PubMed ID: 7373351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.