These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
82 related articles for article (PubMed ID: 7250375)
1. Interaction of lac repressor fragment 33--38 (Lys-Thr-Arg-Glu-Lys-Val) with homo-oligonucleotides. Pörschke D; Gutte B FEBS Lett; 1981 May; 127(1):63-6. PubMed ID: 7250375 [No Abstract] [Full Text] [Related]
2. On the interaction of the lac repressor headpiece with nucleic acids. Hogan M; Wemmer D; Bray RP; Wade-Jardetzky N; Jardetzky O FEBS Lett; 1981 Feb; 124(2):202-3. PubMed ID: 6262117 [No Abstract] [Full Text] [Related]
3. Binding of lac repressor headpiece to poly[d(A-T)]. A thermal denaturation study. Durand M; Schnarr M; Maurizot JC Biochem Biophys Res Commun; 1983 Jan; 110(1):169-75. PubMed ID: 6340664 [TBL] [Abstract][Full Text] [Related]
4. Inducer binding to lac repressor: effects of poly[d(A-T)] and trypsin digestion. Friedman BE; Matthews KS Biochem Biophys Res Commun; 1978 Nov; 85(1):497-504. PubMed ID: 369559 [No Abstract] [Full Text] [Related]
5. lac repressor changes conformation upon binding to poly[dA-T)]. Kelsey DE; Rounds TC; York SS Proc Natl Acad Sci U S A; 1979 Jun; 76(6):2649-53. PubMed ID: 379862 [TBL] [Abstract][Full Text] [Related]
6. The LexA repressor and its isolated amino-terminal domain interact cooperatively with poly[d(A-T)], a contiguous pseudo-operator, but not with random DNA: a circular dichroism study. Hurstel S; Granger-Schnarr M; Schnarr M Biochemistry; 1990 Feb; 29(7):1961-70. PubMed ID: 2184894 [TBL] [Abstract][Full Text] [Related]
7. A hypothesis on a specific sequence-dependent conformation of DNA and its relation to the binding of the lac-repressor protein. Klug A; Jack A; Viswamitra MA; Kennard O; Shakked Z; Steitz TA J Mol Biol; 1979 Jul; 131(4):669-80. PubMed ID: 513130 [No Abstract] [Full Text] [Related]
8. Association of Escherichia coli lac repressor with poly[d(A-T)] monitored with 8-anilino-1-napthalenesulfonate. Worah DM; Gibboney KM; Yang LM; York SS Biochemistry; 1978 Oct; 17(21):4487-92. PubMed ID: 363142 [TBL] [Abstract][Full Text] [Related]
9. Interaction of lac repressor with alternating poly d (A-T) and poly d (G-C). Circular dichroism studies. Durand M; Maurizot JC Biochimie; 1980; 62(7):503-7. PubMed ID: 6996747 [TBL] [Abstract][Full Text] [Related]
10. Stoichiometry of lac repressor binding to nonspecific DNA: three different complexes form. Lawson RC; York SS Biochemistry; 1987 Jul; 26(15):4867-75. PubMed ID: 3311156 [TBL] [Abstract][Full Text] [Related]
11. Interactions between cro repressor and the model specific binding site. Kirpichnikov MP; Kurochkin AV; Chernov BK; Skryabin KG FEBS Lett; 1984 Oct; 175(2):317-20. PubMed ID: 6236998 [TBL] [Abstract][Full Text] [Related]
12. Reversal of the long-wavelength CD band of poly(dI-dC).poly(dI-dC) on specific interaction with the 53-58 peptide fragment of the lac repressor. Rao MV; Atreyi M; Kumar GS; Kumar S Biopolymers; 1987 Mar; 26(3):329-32. PubMed ID: 3567317 [No Abstract] [Full Text] [Related]
13. Structure of the deoxytetranucleotide d-pApTpApT and a sequence-dependent model for poly(dA-dT). Viswamitra MA; Shakked Z; Jones PG; Sheldrick GM; Salisbury SA; Kennard O Biopolymers; 1982 Mar; 21(3):513-33. PubMed ID: 7066470 [No Abstract] [Full Text] [Related]
15. The lac repressor and its N-terminal headpiece can bind a mini-operator containing a hairpin loop made of a hexaethylene glycol chain. Maurizot JC; Chevrie K; Durand M; Thuong NT FEBS Lett; 1991 Aug; 288(1-2):101-4. PubMed ID: 1879541 [TBL] [Abstract][Full Text] [Related]
16. Cooperative and salt-resistant binding of lexA protein to non-operator DNA. Schnarr M; Daune M FEBS Lett; 1984 Jun; 171(2):207-10. PubMed ID: 6723984 [TBL] [Abstract][Full Text] [Related]
17. Interaction of oligonucleotides with a single stranded DNA binding site of RecA protein. Nakano S; Sasaki M; Sugimoto N Nucleic Acids Symp Ser; 1995; (34):61-2. PubMed ID: 8841552 [TBL] [Abstract][Full Text] [Related]
18. Interactions of the 26-39 fragment of the cro protein from lambda bacteriophage with nucleic acids. Mayer R; Lancelot G; Hélène C FEBS Lett; 1983 Mar; 153(2):339-44. PubMed ID: 6225680 [TBL] [Abstract][Full Text] [Related]
19. Primary and tertiary structure of the principal human adenylate kinase. Von Zabern I; Wittmann-Liebold B; Untucht-Grau R; Schirmer RH; Pai EF Eur J Biochem; 1976 Sep; 68(1):281-90. PubMed ID: 183954 [TBL] [Abstract][Full Text] [Related]
20. Primary structure of murine major histocompatibility complex alloantigens: amino acid sequence of the amino-terminal one hundred and seventy-three residues of the H-2Kb glycoprotein. Uehara H; Ewenstein BM; Martinko JM; Nathenson SG; Coligan JE; Kindt TJ Biochemistry; 1980 Jan; 19(2):306-15. PubMed ID: 6986168 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]