BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 7250502)

  • 1. Membrane properties of cultured rat sympathetic neurons: morphological studies of adrenergic and cholinergic differentiation.
    Schwab M; Landis S
    Dev Biol; 1981 May; 84(1):67-78. PubMed ID: 7250502
    [No Abstract]   [Full Text] [Related]  

  • 2. Selective retrograde transsynaptic transfer of a protein, tetanus toxin, subsequent to its retrograde axonal transport.
    Schwab ME; Suda K; Thoenen H
    J Cell Biol; 1979 Sep; 82(3):798-810. PubMed ID: 92475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Ratio of adrenergic and cholinergic structures in the prevertebral sympathetic and parasympathetic ganglia].
    Bulygin IA; Lapsha VI; Bocharova VN
    Fiziol Zh SSSR Im I M Sechenova; 1984 May; 70(5):569-83. PubMed ID: 6468691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retrograde axonal transport of specific macromolecules as a tool for characterizing nerve terminal membranes.
    Dumas M; Schwab ME; Thoenen H
    J Neurobiol; 1979 Mar; 10(2):179-97. PubMed ID: 512657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective uptake of C-fragment of tetanus toxin by sympathetic preganglionic nerve terminals.
    Meckler RL; Baron R; McLachlan EM
    Neuroscience; 1990; 36(3):823-9. PubMed ID: 2234414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuronal acquisition of tetanus toxin binding sites: relationship with the last mitotic cycle.
    Koulakoff A; Bizzini B; Berwald-Netter Y
    Dev Biol; 1983 Dec; 100(2):350-7. PubMed ID: 6653877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of gangliosides in the uptake and retrograde axonal transport of cholera and tetanus toxin as compared to nerve growth factor and wheat germ agglutinin.
    Stoeckel K; Schwab M; Thoenen H
    Brain Res; 1977 Aug; 132(2):273-85. PubMed ID: 70259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Axonal transport from the nerve ending to the nerve cell body: a pathway for trophic signals and neurotoxins].
    Schwab ME
    Bull Schweiz Akad Med Wiss; 1980 Apr; 36(1-3):7-19. PubMed ID: 6159028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of tetanus toxin binding to rat brain membranes. Evidence for a high-affinity proteinase-sensitive receptor.
    Pierce EJ; Davison MD; Parton RG; Habig WH; Critchley DR
    Biochem J; 1986 Jun; 236(3):845-52. PubMed ID: 3539106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fate of tetanus toxin bound to the surface of primary neurons in culture: evidence for rapid internalization.
    Critchley DR; Nelson PG; Habig WH; Fishman PH
    J Cell Biol; 1985 May; 100(5):1499-507. PubMed ID: 3988797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions of the nicotinic acetylcholine receptor from rat brain with lectins.
    Salvaterra PM; Gurd JM; Mahler HR
    J Neurochem; 1977 Aug; 29(2):345-8. PubMed ID: 886337
    [No Abstract]   [Full Text] [Related]  

  • 12. Retrograde transport and effects of toxic ricin in the autonomic nervous system.
    Harper CG; Gonatas JO; Mizutani T; Gonatas NK
    Lab Invest; 1980 Apr; 42(4):396-404. PubMed ID: 7374104
    [No Abstract]   [Full Text] [Related]  

  • 13. Alpha-adrenergic receptors in the rat superior cervical ganglion.
    Kafka MS; Thoa NB
    Biochem Pharmacol; 1979 Aug; 28(16):2485-9. PubMed ID: 41530
    [No Abstract]   [Full Text] [Related]  

  • 14. Concanavalin A inhibits nicotinic acetylcholine receptor function in cultured chick ciliary ganglion neurons.
    Messing A; Bizzini B; Gonatas NK
    Brain Res; 1984 Jun; 303(2):241-9. PubMed ID: 6331572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Horseradish peroxidase (HRP) conjugates of cholera toxin and lectins are more sensitive retrogradely transported markers than free HRP.
    Trojanowski JQ; Gonatas JO; Gonatas NK
    Brain Res; 1982 Jan; 231(1):33-50. PubMed ID: 6173093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study of the mechanism of internalisation of tetanus toxin by primary mouse spinal cord cultures.
    Parton RG; Ockleford CD; Critchley DR
    J Neurochem; 1987 Oct; 49(4):1057-68. PubMed ID: 3114428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of glycolipid binding sites for soybean agglutinin and differences in the surface glycolipids of cultured adrenergic and cholinergic sympathetic neurons.
    Zurn AD
    Dev Biol; 1982 Dec; 94(2):483-98. PubMed ID: 6185381
    [No Abstract]   [Full Text] [Related]  

  • 18. Non-coated membrane invaginations are involved in binding and internalization of cholera and tetanus toxins.
    Montesano R; Roth J; Robert A; Orci L
    Nature; 1982 Apr; 296(5858):651-3. PubMed ID: 7070509
    [No Abstract]   [Full Text] [Related]  

  • 19. A correlation between the appearance and the evolution of tetanus toxin binding cells and neurogenesis.
    Koulakoff A; Bizzini B; Berwald-Netter Y
    Brain Res; 1982 Oct; 281(2):139-47. PubMed ID: 6754006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison between the retrograde axonal transport of nerve growth factor and tetanus toxin in motor, sensory and adrenergic neurons.
    Stöckel K; Schwab M; Thoenen H
    Brain Res; 1975 Nov; 99(1):1-16. PubMed ID: 52914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.