These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
74 related articles for article (PubMed ID: 7250527)
1. Short-term juvenile crowding arrests the developmental formation of dendritic spines on tectal interneurons in jewel fish. Burgess JW; Coss RG Dev Psychobiol; 1981 Jul; 14(4):389-96. PubMed ID: 7250527 [TBL] [Abstract][Full Text] [Related]
2. Effects of chronic crowding stress on midbrain development: changes in dendritic spine density and morphology in jewel fish optic tectum. Burgess JW; Coss RG Dev Psychobiol; 1982 Sep; 15(5):461-70. PubMed ID: 6890000 [TBL] [Abstract][Full Text] [Related]
3. Social experience affects the development of dendritic spines and branches on tectal interneurons in the jewel fish. Coss RG; Globus A Dev Psychobiol; 1979 Jul; 12(4):347-58. PubMed ID: 456761 [TBL] [Abstract][Full Text] [Related]
4. Crowded jewel fish show changes in dendritic spine density and spine morphology. Burgess JW; Coss RG Neurosci Lett; 1980 May; 17(3):277-81. PubMed ID: 6892054 [TBL] [Abstract][Full Text] [Related]
5. Jewel fish retain juvenile schooling pattern after crowded development. Coss RG; Burgess JW Dev Psychobiol; 1981 Sep; 14(5):451-7. PubMed ID: 7196851 [TBL] [Abstract][Full Text] [Related]
6. Spine stems on tectal interneurons in jewel fish are shortened by social stimulation. Coss RG; Globus A Science; 1978 May; 200(4343):787-90. PubMed ID: 644322 [TBL] [Abstract][Full Text] [Related]
7. Plasticity of dendritic spine formation: a state-dependent stochastic process. Berard DR; Burgess JW; Coss RG Int J Neurosci; 1981; 13(2-3):93-8. PubMed ID: 7239793 [TBL] [Abstract][Full Text] [Related]
8. Early development of spiny neurons in fish and mouse: morphometric measures of dendritic spine formation pattern. Burgess JW; Monachello MP; McGinn MD Brain Res; 1982 Aug; 256(4):465-72. PubMed ID: 7127153 [TBL] [Abstract][Full Text] [Related]
9. Chronic exposure to caffeine during early development increases dendritic spine and branch formation in midbrain optic tectum. Burgess JW; Monachello MP Brain Res; 1983 Jan; 282(2):123-9. PubMed ID: 6831235 [TBL] [Abstract][Full Text] [Related]
10. Time-lapse in vivo imaging of the morphological development of Xenopus optic tectal interneurons. Wu GY; Cline HT J Comp Neurol; 2003 May; 459(4):392-406. PubMed ID: 12687706 [TBL] [Abstract][Full Text] [Related]
11. Dendritic morphology of CA1 pyramidal neurones from the rat hippocampus: II. Spine distributions. Bannister NJ; Larkman AU J Comp Neurol; 1995 Sep; 360(1):161-71. PubMed ID: 7499561 [TBL] [Abstract][Full Text] [Related]
12. Cytoarchitecture of the optic tectum of the squirrelfish, Holocentrus. Schroeder DM; Vanegas H; Ebbesson SO J Comp Neurol; 1980 Jun; 191(3):337-51. PubMed ID: 7410597 [TBL] [Abstract][Full Text] [Related]
13. Accelerated dendritic development of rat cortical pyramidal cells and interneurons after biolistic transfection with BDNF and NT4/5. Wirth MJ; Brun A; Grabert J; Patz S; Wahle P Development; 2003 Dec; 130(23):5827-38. PubMed ID: 14573511 [TBL] [Abstract][Full Text] [Related]
14. Dynamics of process formation during differentiation of tectal neurons in embryonic zebrafish. Kaethner RJ; Stuermer CA J Neurobiol; 1997 Jun; 32(6):627-39. PubMed ID: 9183742 [TBL] [Abstract][Full Text] [Related]
15. Rapid effect of biologically relevant stimulation on tectal neurons: changes in dendritic spine morphology after nine minutes are retained for twenty-four hours. Burgess JW; Coss RG Brain Res; 1983 May; 266(2):217-23. PubMed ID: 6871659 [TBL] [Abstract][Full Text] [Related]
16. Timing of dispersal in juvenile jewel fish during development is unaffected by available space. Chen MJ; Coss RG; Goldthwaite RO Dev Psychobiol; 1983 Jul; 16(4):303-10. PubMed ID: 6884579 [TBL] [Abstract][Full Text] [Related]
17. Postnatal development of dendritic spines on olfactory bulb granule cells in rats. Matsutani S; Yamamoto N J Comp Neurol; 2004 Jun; 473(4):553-61. PubMed ID: 15116390 [TBL] [Abstract][Full Text] [Related]
18. Bottlebrush dendritic endings and large dendritic fields: motion-detecting neurons in the tectofugal pathway. Luksch H; Cox K; Karten HJ J Comp Neurol; 1998 Jul; 396(3):399-414. PubMed ID: 9624592 [TBL] [Abstract][Full Text] [Related]
19. A Golgi-electron microscopic study of goldfish optic tectum. I. Description of afferents, cell types, and synapses. Meek J J Comp Neurol; 1981 Jun; 199(2):149-73. PubMed ID: 7251937 [TBL] [Abstract][Full Text] [Related]
20. Changes in the spine density on apical dendrites of pyramidal neurons in the motor area of the cerebral cortex after callosotomy: a study by a modified Golgi-Cox method in the mouse. Shimada M; Negi T; Itano T; Hayasaki H; Konishi M; Watanabe M; Murakami TH Kaibogaku Zasshi; 1997 Dec; 72(6):545-52. PubMed ID: 9465558 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]