These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 725060)

  • 1. The equivalent tissue-air ratio method for making absorbed dose calculations in a heterogeneous medium.
    Sontag MR; Cunningham JR
    Radiology; 1978 Dec; 129(3):787-94. PubMed ID: 725060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implications of computed tomography for inhomogeneity corrections in photon beam dose calculations.
    Sontag MR; Battista JJ; Bronskill MJ; Cunningham JR
    Radiology; 1977 Jul; 124(1):143-9. PubMed ID: 405707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dosimetric impact of a CT metal artefact suppression algorithm for proton, electron and photon therapies.
    Wei J; Sandison GA; Hsi WC; Ringor M; Lu X
    Phys Med Biol; 2006 Oct; 51(20):5183-97. PubMed ID: 17019032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tissue segmentation in Monte Carlo treatment planning: a simulation study using dual-energy CT images.
    Bazalova M; Carrier JF; Beaulieu L; Verhaegen F
    Radiother Oncol; 2008 Jan; 86(1):93-8. PubMed ID: 18068841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A feasibility study for image guided radiotherapy using low dose, high speed, cone beam X-ray volumetric imaging.
    Sykes JR; Amer A; Czajka J; Moore CJ
    Radiother Oncol; 2005 Oct; 77(1):45-52. PubMed ID: 16157400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Method for making absorbed dose calculations in a heterogeneous medium using equations of differential scatter-air ratio and differential backscatter factor based on the density scaling theorem].
    Iwasaki A; Ishito T
    Nihon Igaku Hoshasen Gakkai Zasshi; 1984 Mar; 44(3):503-16. PubMed ID: 6462897
    [No Abstract]   [Full Text] [Related]  

  • 7. Evaluation of density correction algorithms for photon-beam dose calculations.
    Tatcher M; Palti S
    Radiology; 1981 Oct; 141(1):201-5. PubMed ID: 7291526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AAA and PBC calculation accuracy in the surface build-up region in tangential beam treatments. Phantom and breast case study with the Monte Carlo code PENELOPE.
    Panettieri V; Barsoum P; Westermark M; Brualla L; Lax I
    Radiother Oncol; 2009 Oct; 93(1):94-101. PubMed ID: 19541380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical evaluation of CT scan methods for radiation therapy planning: comparison of fast, slow and gating scan using the 256-detector row CT scanner.
    Mori S; Kanematsu N; Mizuno H; Sunaoka M; Endo M
    Phys Med Biol; 2006 Feb; 51(3):587-600. PubMed ID: 16424583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of computed tomography numbers in dose calculations for radiation therapy.
    Huizenga H; Storchi PR
    Acta Radiol Oncol; 1985; 24(6):509-19. PubMed ID: 3006441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simulation of MRI based dose calculations on the basis of radiotherapy planning CT images.
    Eilertsen K; Vestad LN; Geier O; Skretting A
    Acta Oncol; 2008; 47(7):1294-302. PubMed ID: 18663645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implementation and evaluation of patient-specific three-dimensional internal dosimetry.
    Kolbert KS; Sgouros G; Scott AM; Bronstein JE; Malane RA; Zhang J; Kalaigian H; McNamara S; Schwartz L; Larson SM
    J Nucl Med; 1997 Feb; 38(2):301-8. PubMed ID: 9025759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Treatment planning for internal radionuclide therapy: three-dimensional dosimetry for nonuniformly distributed radionuclides.
    Sgouros G; Barest G; Thekkumthala J; Chui C; Mohan R; Bigler RE; Zanzonico PB
    J Nucl Med; 1990 Nov; 31(11):1884-91. PubMed ID: 2231006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advanced kernel methods vs. Monte Carlo-based dose calculation for high energy photon beams.
    Fotina I; Winkler P; Künzler T; Reiterer J; Simmat I; Georg D
    Radiother Oncol; 2009 Dec; 93(3):645-53. PubMed ID: 19926153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of CT scanners in megavoltage photon-beam therapy planning.
    Geise RA; McCullough EC
    Radiology; 1977 Jul; 124(1):133-41. PubMed ID: 405706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of electron beam dose calculation accuracy between treatment planning systems using either a pencil beam or a Monte Carlo algorithm.
    Ding GX; Cygler JE; Yu CW; Kalach NI; Daskalov G
    Int J Radiat Oncol Biol Phys; 2005 Oct; 63(2):622-33. PubMed ID: 16168854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A particle track-repeating algorithm for proton beam dose calculation.
    Li JS; Shahine B; Fourkal E; Ma CM
    Phys Med Biol; 2005 Mar; 50(5):1001-10. PubMed ID: 15798272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical application of a CT based treatment planning system.
    Sontag MR; Cunningham JR
    Comput Tomogr; 1978; 2(2):117-30. PubMed ID: 699542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dose to tissue medium or water cavities as surrogate for the dose to cell nuclei at brachytherapy photon energies.
    Enger SA; Ahnesjö A; Verhaegen F; Beaulieu L
    Phys Med Biol; 2012 Jul; 57(14):4489-500. PubMed ID: 22722477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new approach to CT pixel-based photon dose calculations in heterogeneous media.
    Wong JW; Henkelman RM
    Med Phys; 1983; 10(2):199-208. PubMed ID: 6865860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.