These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 7252479)

  • 1. Evidence that Streptococcus mutans constructs its membrane with excess fluidity for survival at suboptimal temperatures.
    Tsien H; Panos C; Shockman GD; Higgins ML
    J Gen Microbiol; 1980 Nov; 121(1):105-11. PubMed ID: 7252479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatty acid fingerprints of Streptococcus mutans NCTC 10832 grown at various temperatures.
    Drucker DB; Veazey FJ
    Appl Environ Microbiol; 1977 Feb; 33(2):221-6. PubMed ID: 848945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modifications in membrane fatty acid composition of Salmonella typhimurium in response to growth conditions and their effect on heat resistance.
    Alvarez-Ordóñez A; Fernández A; López M; Arenas R; Bernardo A
    Int J Food Microbiol; 2008 Apr; 123(3):212-9. PubMed ID: 18313782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Relationship among growth temperature, membrane fatty acid composition and pressure resistance of Escherichia coli].
    Li ZJ
    Wei Sheng Wu Xue Bao; 2005 Jun; 45(3):426-30. PubMed ID: 15989240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Characterization of fatty acid composition in the cytoplasmic membrane of Streptococcus mutans].
    Kato M
    Gifu Shika Gakkai Zasshi; 1989 Jun; 16(1):16-39. PubMed ID: 2637255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase separations in membranes of Anacystis nidulans grown at different temperatures.
    Furtado D; Williams WP; Brain AP; Quinn PJ
    Biochim Biophys Acta; 1979 Aug; 555(2):352-7. PubMed ID: 113031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical analyses of membranes isolated from Streptococcus mutans BHT.
    Crowley PJ; Hurst SF; Bleiweis AS
    J Dent Res; 1984 Dec; 63(12):1343-7. PubMed ID: 6392377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pseudomonas putida NCTC 10936 balances membrane fluidity in response to physical and chemical stress by changing the saturation degree and the trans/cis ratio of fatty acids.
    Loffhagen N; Härtig C; Babel W
    Biosci Biotechnol Biochem; 2004 Feb; 68(2):317-23. PubMed ID: 14981294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shifts in membrane fatty acid profiles associated with acid adaptation of Streptococcus mutans.
    Quivey RG; Faustoferri R; Monahan K; Marquis R
    FEMS Microbiol Lett; 2000 Aug; 189(1):89-92. PubMed ID: 10913871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of growth temperature on membrane dynamics in a thermophilic cyanobacterium: a spin label study.
    Miller M; Pedersen JZ; Cox RP
    Biochim Biophys Acta; 1988 Sep; 943(3):501-10. PubMed ID: 2843232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Does an increase in membrane unsaturated fatty acids account for Tween 80 stimulation of glucosyltransferase secretion by Streptococcus salivarius?
    Jacques NA; Jacques VL; Wolf AC; Wittenberger CL
    J Gen Microbiol; 1985 Jan; 131(1):67-72. PubMed ID: 3157775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation of long-range membrane order with temperature-dependent growth characteristics of parent and a cold-sensitive, branched-chain-fatty-acid-deficient mutant of Listeria monocytogenes.
    Jones SL; Drouin P; Wilkinson BJ; II Morse PD
    Arch Microbiol; 2002 Mar; 177(3):217-22. PubMed ID: 11907677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Escherichia coli membrane fluidity as detected by excimerization of dipyrenylpropane: sensitivity to the bacterial fatty acid profile.
    Mejía R; Gómez-Eichelmann MC; Fernández MS
    Arch Biochem Biophys; 1999 Aug; 368(1):156-60. PubMed ID: 10415123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane fluidity and fatty acid comparisons in psychrotrophic and mesophilic strains of Acidithiobacillus ferrooxidans under cold growth temperatures.
    Mykytczuk NC; Trevors JT; Twine SM; Ferroni GD; Leduc LG
    Arch Microbiol; 2010 Dec; 192(12):1005-18. PubMed ID: 20852847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Freeze-fracture observations of Corynebacterium glutamicum: the occurrence of an outer membrane-like structure and the influence of temperature on the cytoplasmic membrane.
    Richter W; Hänel F; Hilliger M
    J Basic Microbiol; 1985; 25(8):527-36. PubMed ID: 4087157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tetrahymena strives to maintain the fluidity interrelationships of all its membranes constant. Electron microscope evidence.
    Kitajima Y; Thompson GA
    J Cell Biol; 1977 Mar; 72(3):744-55. PubMed ID: 402370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane fluidity as a factor in production and stability of bacterial ice nuclei active at high subfreezing temperatures.
    Lindow SE
    Cryobiology; 1995 Jun; 32(3):247-58. PubMed ID: 7781327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect of the unsaturation of lipids fatty acids on the structure and function of the cytoplasmic membranes of E. coli].
    Shechter EJ; Letellier LY
    Ann Nutr Aliment; 1980; 34(2):229-40. PubMed ID: 7001985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in membrane fluidity and fatty acid composition of Pseudomonas putida CN-T19 in response to toluene.
    Kim IS; Shim JH; Suh YT
    Biosci Biotechnol Biochem; 2002 Sep; 66(9):1945-50. PubMed ID: 12400696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature and nutrient availability control growth rate and fatty acid composition of facultatively psychrophilic Cobetia marina strain L-2.
    Yumoto I; Hirota K; Iwata H; Akutsu M; Kusumoto K; Morita N; Ezura Y; Okuyama H; Matsuyama H
    Arch Microbiol; 2004 May; 181(5):345-51. PubMed ID: 15067498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.