These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 7252483)

  • 1. Interneurons of the crayfish brain: the relationship between dendrite location and afferent input.
    Glantz RM; Kirk M; Viancour T
    J Neurobiol; 1981 Jul; 12(4):311-28. PubMed ID: 7252483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disynaptic and polysynaptic statocyst pathways to an identified set of premotor nonspiking interneurons in the crayfish brain.
    Fujisawa K; Takahata M
    J Comp Neurol; 2007 Aug; 503(4):560-72. PubMed ID: 17534936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crayfish brain interneurons that converge with serotonin giant cells in accessory lobe glomeruli.
    Sandeman D; Beltz B; Sandeman R
    J Comp Neurol; 1995 Feb; 352(2):263-79. PubMed ID: 7721994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regional specialization in synaptic input and output in an identified local nonspiking interneuron of the crayfish revealed by light and electron microscopy.
    Kondoh Y; Hisada M
    J Comp Neurol; 1986 Sep; 251(3):334-48. PubMed ID: 3771834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical responses and synaptic connections of giant serotonin-immunoreactive neurons in crayfish olfactory and accessory lobes.
    Sandeman DC; Sandeman RE
    J Comp Neurol; 1994 Mar; 341(1):130-44. PubMed ID: 8006219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrastructure of the circuit providing input to the crayfish lateral giant neurons.
    Lee SC; Krasne FB
    J Comp Neurol; 1993 Jan; 327(2):271-88. PubMed ID: 8425945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active dendritic properties constrain input-output relationships in neurons of the central olfactory pathway in the crayfish forebrain.
    Mellon D
    Microsc Res Tech; 2003 Feb; 60(3):278-90. PubMed ID: 12539158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrastructure of the synaptic terminals of the dorsal giant serotonin-IR neuron and deutocerebral commissure interneurons in the accessory and olfactory lobes of the crayfish.
    Sandeman RE; Watson AH; Sandeman DC
    J Comp Neurol; 1995 Oct; 361(4):617-32. PubMed ID: 8576418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parasol cells of the hemiellipsoid body in the crayfish Procambarus clarkii: dendritic branching patterns and functional implications.
    McKinzie ME; Benton JL; Beltz BS; Mellon D
    J Comp Neurol; 2003 Jul; 462(2):168-79. PubMed ID: 12794741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation between the receptive fields of locust interneurons, their dendritic morphology, and the central projections of mechanosensory neurons.
    Burrows M; Newland PL
    J Comp Neurol; 1993 Mar; 329(3):412-26. PubMed ID: 8459052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silencing normal input permits regenerating foreign afferents to innervate an identified crayfish sensory interneuron.
    Krasne FB
    J Neurobiol; 1987 Jan; 18(1):61-73. PubMed ID: 3572387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ramification pattern and ultrastructural characteristics of the serotonin-immunoreactive neuron in the antennal lobe of the moth Manduca sexta: a laser scanning confocal and electron microscopic study.
    Sun XJ; Tolbert LP; Hildebrand JG
    J Comp Neurol; 1993 Dec; 338(1):5-16. PubMed ID: 8300899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dendritic architecture of rat somatosensory thalamocortical projection neurons.
    Ohara PT; Havton LA
    J Comp Neurol; 1994 Mar; 341(2):159-71. PubMed ID: 8163721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in synaptic integration during the growth of the lateral giant neuron of crayfish.
    Edwards DH; Yeh SR; Barnett LD; Nagappan PR
    J Neurophysiol; 1994 Aug; 72(2):899-908. PubMed ID: 7983545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovery from deafferentation by cricket interneurons after reinnervation by their peripheral field.
    Murphey RK; Matsumoto SG; Mendenhall B
    J Comp Neurol; 1976 Oct; 169(3):335-46. PubMed ID: 972203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GABAergic inhibition in the neostriatum.
    Wilson CJ
    Prog Brain Res; 2007; 160():91-110. PubMed ID: 17499110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution and ultrastructure of synapses on a premotor local nonspiking interneuron of the crayfish.
    Kondoh Y; Hisada M
    J Comp Neurol; 1986 Dec; 254(2):259-70. PubMed ID: 3794006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mushroom body volumes and visual interneurons in ants: comparison between sexes and castes.
    Ehmer B; Gronenberg W
    J Comp Neurol; 2004 Feb; 469(2):198-213. PubMed ID: 14694534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple modes of action potential initiation and propagation in mitral cell primary dendrite.
    Chen WR; Shen GY; Shepherd GM; Hines ML; Midtgaard J
    J Neurophysiol; 2002 Nov; 88(5):2755-64. PubMed ID: 12424310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synaptic connections of dorsal horn group II spinal interneurons: synapses formed with the interneurons and by their axon collaterals.
    Maxwell DJ; Kerr R; Jankowska E; Riddell JS
    J Comp Neurol; 1997 Mar; 380(1):51-69. PubMed ID: 9073082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.