These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 7252868)

  • 1. Asymmetry of hexose transfer system in erythrocytes of fetal and new-born guinea-pigs.
    Aubby DS; Widdas WF
    J Physiol; 1980 Dec; 309():317-27. PubMed ID: 7252868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetry in the hexose transfer system of erythrocytes from new-born guinea-pigs [proceedings].
    Aubby DS; Widdas WF
    J Physiol; 1979 Aug; 293():73P. PubMed ID: 501650
    [No Abstract]   [Full Text] [Related]  

  • 3. Asymmetry of the hexose transfer system in human erythrocytes. Comparison of the effects of cytochalasin B, phloretin and maltose as competitive inhibitors.
    Basketter DA; Widdas WF
    J Physiol; 1978 May; 278():389-401. PubMed ID: 671319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetry of the hexose transfer system in human erythrocytes. Experiments with non-transportable inhibitors.
    Baker GF; Basketter DA; Widdas WF
    J Physiol; 1978 May; 278():377-88. PubMed ID: 671317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parameters for 3-O-methyl glucose transport in human erythrocytes and fit of asymmetric carrier kinetics.
    Baker GF; Widdas WF
    J Physiol; 1988 Jan; 395():57-76. PubMed ID: 3411487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phloretinyl-3'-benzylazide: a high affinity probe for the sugar transporter in human erythrocytes. I. Hexose transport inhibition and photolabeling of mutarotase.
    Fannin FF; Evans JO; Gibbs EM; Diedrich DF
    Biochim Biophys Acta; 1981 Dec; 649(2):189-201. PubMed ID: 7198487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the D-glucose/Na+ cotransport system in the intestinal brush-border membrane by using the specific substrate, methyl alpha-D-glucopyranoside.
    Brot-Laroche E; Supplisson S; Delhomme B; Alcalde AI; Alvarado F
    Biochim Biophys Acta; 1987 Nov; 904(1):71-80. PubMed ID: 3663668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of sugar transport in the pigeon red blood cell.
    Simons TJ
    J Physiol; 1983 May; 338():477-99. PubMed ID: 6410059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the equilibrium exchange of nucleosides and 3-O-methylglucose in human erythrocytes and of the effects of cytochalasin B, phloretin and dipyridamole on their transport.
    Plagemann PG; Woffendin C
    Biochim Biophys Acta; 1987 May; 899(2):295-301. PubMed ID: 3580369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The action of inhibitors of sugar transport phlorizin, phloretin and cytochalasin B in model systems].
    Vasianin SI
    Tsitologiia; 1989 Jan; 31(1):57-65. PubMed ID: 2718259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the inhibition by stilbene disulphonates and phloretin of lactate and pyruvate transport into rat and guinea-pig cardiac myocytes suggests the presence of two kinetically distinct carriers in heart cells.
    Wang X; Poole RC; Halestrap AP; Levi AJ
    Biochem J; 1993 Feb; 290 ( Pt 1)(Pt 1):249-58. PubMed ID: 8439293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The permeation of human red cells by 4,6-O-ethylidene- -D-glucopyranose (ethylidene glucose).
    Baker GF; Widdas WF
    J Physiol; 1973 May; 231(1):129-42. PubMed ID: 4715341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hexose transport in human myoblasts.
    Mesmer OT; Lo TC
    Biochem J; 1989 Aug; 262(1):15-24. PubMed ID: 2818559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human erythrocyte sugar transport is incompatible with available carrier models.
    Cloherty EK; Heard KS; Carruthers A
    Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anomalous asymmetric kinetics of human red cell hexose transfer: role of cytosolic adenosine 5'-triphosphate.
    Carruthers A
    Biochemistry; 1986 Jun; 25(12):3592-602. PubMed ID: 3718945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The inhibitory effect of phlorhizin and phloretin on hexose transport in the liver.
    Ibu JO; Short AH
    Scand J Gastroenterol Suppl; 1986; 124():75-81. PubMed ID: 3508647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The asymmetry of the facilitated transfer system for hexoses in human red cells and the simple kinetics of a two component model.
    Baker GF; Widdas WF
    J Physiol; 1973 May; 231(1):143-65. PubMed ID: 4715343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of 3-O-methyl glucose transport in red blood cells of newborn pigs.
    Zeidler RB; Lee P; Kim HD
    J Gen Physiol; 1976 Jan; 67(1):67-80. PubMed ID: 173790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hexose transport in preimplantation rabbit blastocysts.
    Robinson DH; Smith PR; Benos DJ
    J Reprod Fertil; 1990 May; 89(1):1-11. PubMed ID: 2165154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The hexose transport system in the human K-562 chronic myelogenous leukemia-derived cell.
    Dozier JC; Diedrich DF; Turco SJ
    J Cell Physiol; 1981 Jul; 108(1):77-82. PubMed ID: 6943146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.