These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 7254365)
1. Pathways of dopamine metabolism in the rabbit caudate nucleus in vitro. Zumstein A; Karduck W; Starke K Naunyn Schmiedebergs Arch Pharmacol; 1981 Jun; 316(3):205-17. PubMed ID: 7254365 [TBL] [Abstract][Full Text] [Related]
2. Evidence for autoreceptor modulation of endogenous dopamine release from rabbit caudate nucleus in vitro. Parker EM; Cubeddu LX J Pharmacol Exp Ther; 1985 Feb; 232(2):492-500. PubMed ID: 3155797 [TBL] [Abstract][Full Text] [Related]
3. Modulation by endogenous dopamine of the release of acetylcholine in the caudate nucleus of the rabbit. Hertting G; Zumstein A; Jackisch R; Hoffmann I; Starke K Naunyn Schmiedebergs Arch Pharmacol; 1980; 315(2):111-7. PubMed ID: 7207641 [TBL] [Abstract][Full Text] [Related]
4. An in vitro model of 1-methyl-4-phenyl-pyridinium (MPP+) toxicity: incubation of rabbit caudate nucleus slices with MPP+ followed by biochemical and functional analysis. Feuerstein TJ; Hedler L; Jackisch R; Hertting G Br J Pharmacol; 1988 Oct; 95(2):449-58. PubMed ID: 3265882 [TBL] [Abstract][Full Text] [Related]
5. Amphetamine inhibits the electrically evoked release of [3H]dopamine from slices of the rabbit caudate. Kamal LA; Arbilla S; Galzin AM; Langer SZ J Pharmacol Exp Ther; 1983 Nov; 227(2):446-58. PubMed ID: 6631724 [TBL] [Abstract][Full Text] [Related]
6. Transmitter release patterns of noradrenergic, dopaminergic and cholinergic axons in rabbit brain slices during short pulse trains, and the operation of presynaptic autoreceptors. Mayer A; Limberger N; Starke K Naunyn Schmiedebergs Arch Pharmacol; 1988 Dec; 338(6):632-43. PubMed ID: 2907613 [TBL] [Abstract][Full Text] [Related]
7. Effects of d-amphetamine and dopamine synthesis inhibitors on dopamine and acetylcholine neurotransmission in the striatum. I. Release in the absence of vesicular transmitter stores. Parker EM; Cubeddu LX J Pharmacol Exp Ther; 1986 Apr; 237(1):179-92. PubMed ID: 3007736 [TBL] [Abstract][Full Text] [Related]
8. Effects of verapamil, diltiazem and ryosidine on the release of dopamine and acetylcholine in rabbit caudate nucleus slices. Starke K; Späth L; Wichmann T Naunyn Schmiedebergs Arch Pharmacol; 1984 Feb; 325(2):124-30. PubMed ID: 6144047 [TBL] [Abstract][Full Text] [Related]
9. Different effects of serotonin (5-HT) uptake blockers in caudate nucleus and hippocampus of the rabbit: role of monoamine oxidase in dopaminergic terminals. Lupp A; Bär KI; Lücking CH; Feuerstein TJ Psychopharmacology (Berl); 1992; 106(1):118-26. PubMed ID: 1738788 [TBL] [Abstract][Full Text] [Related]
10. False labelling of dopaminergic terminals in the rabbit caudate nucleus: uptake and release of [3H]-5-hydroxytryptamine. Feuerstein TJ; Hertting G; Lupp A; Neufang B Br J Pharmacol; 1986 Jul; 88(3):677-84. PubMed ID: 3742155 [TBL] [Abstract][Full Text] [Related]
11. Release and metabolism of [3H]dopamine in the neurointermediate lobe of the rat pituitary gland. Racké K; Abel D; Muscholl E Neuroscience; 1985 Nov; 16(3):501-10. PubMed ID: 4094688 [TBL] [Abstract][Full Text] [Related]
12. Interneurones are probably not involved in the presynaptic dopaminergic control of dopamine release in rabbit caudate nucleus. Jackisch R; Zumstein A; Hertting G; Starke K Naunyn Schmiedebergs Arch Pharmacol; 1980 Nov; 314(2):129-33. PubMed ID: 7453832 [TBL] [Abstract][Full Text] [Related]
13. Electrically induced release of endogenous noradrenaline and dopamine from brain slices: pseudo-one-pulse stimulation utilized to study presynaptic autoinhibition. Thienprasert A; Singer EA Naunyn Schmiedebergs Arch Pharmacol; 1993 Aug; 348(2):119-26. PubMed ID: 8232591 [TBL] [Abstract][Full Text] [Related]
14. Presynaptic receptor systems on the noradrenergic neurones of the rabbit pulmonary artery. Endo T; Starke K; Bangerter A; Taube HD Naunyn Schmiedebergs Arch Pharmacol; 1977 Feb; 296(3):229-47. PubMed ID: 840318 [TBL] [Abstract][Full Text] [Related]
15. Changes in sensitivity of release modulating dopamine autoreceptors after chronic treatment with haloperidol. Nowak JZ; Arbilla S; Galzin AM; Langer SZ J Pharmacol Exp Ther; 1983 Aug; 226(2):558-64. PubMed ID: 6875865 [TBL] [Abstract][Full Text] [Related]
16. Neurochemical investigations in vitro with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in preparations of rat brain. Markstein R; Lahaye D Eur J Pharmacol; 1984 Nov; 106(2):301-11. PubMed ID: 6335691 [TBL] [Abstract][Full Text] [Related]
17. Effects of d-amphetamine and dopamine synthesis inhibitors on dopamine and acetylcholine neurotransmission in the striatum. II. Release in the presence of vesicular transmitter stores. Parker EM; Cubeddu LX J Pharmacol Exp Ther; 1986 Apr; 237(1):193-203. PubMed ID: 3007738 [TBL] [Abstract][Full Text] [Related]
18. Rate and duration of stimulation determine presynaptic effects of haloperidol on dopaminergic neurons. Hoffmann IS; Cubeddu LX J Neurochem; 1982 Aug; 39(2):585-8. PubMed ID: 7086437 [TBL] [Abstract][Full Text] [Related]
19. No evidence for presynaptic opioid receptors on cholinergic, but presence of kappa-receptors on dopaminergic neurons in the rabbit caudate nucleus: involvement of endogenous opioids. Jackisch R; Hotz H; Hertting G Naunyn Schmiedebergs Arch Pharmacol; 1993 Sep; 348(3):234-41. PubMed ID: 8232601 [TBL] [Abstract][Full Text] [Related]
20. Dopamine efflux from striatal slices after intracerebral 6-hydroxydopamine: evidence for compensatory hyperactivity of residual terminals. Snyder GL; Keller RW; Zigmond MJ J Pharmacol Exp Ther; 1990 May; 253(2):867-76. PubMed ID: 2110978 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]