These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 7254939)

  • 1. Red cell metabolic alterations in postnatal life in term infants: possible control mechanisms.
    Travis SF; Kumar SP; Delivoria-Papadopoulos M
    Pediatr Res; 1981 Feb; 15(2):133-7. PubMed ID: 7254939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Red cell metabolic alterations in postnatal life in term infants: glycolytic enzymes and glucose-6-phosphate dehydrogenase.
    Travis SF; Kumar SP; Paez PC; Delivoria-Papadopoulos M
    Pediatr Res; 1980 Dec; 14(12):1349-52. PubMed ID: 6451861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequential changes in red cell glycolytic enzymes and intermediates and possible control mechanisms in the first two months of postnatal life in lambs.
    Travis SF; Wagerle LC; De Alvarado CM; Rose G; Delivoria-Papadopoulos M
    Pediatr Res; 1985 Mar; 19(3):272-7. PubMed ID: 3157096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Red cell glycolytic intermediates and adenosine triphosphate in preterm infants on the first day of life.
    Travis SF; Kumar SP; Sacks LM; Gillmer P; Delivoria-Papadopoulos M
    Pediatr Res; 1985 Jan; 19(1):117-21. PubMed ID: 3969302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Red cell metabolism in the newborn infant. V. Glycolytic intermediates and glycolytic enzymes.
    Oski FA
    Pediatrics; 1969 Jul; 44(1):84-91. PubMed ID: 4307568
    [No Abstract]   [Full Text] [Related]  

  • 6. Red cell enzymopathies in the newborn. I. Evaluation of red cell metabolism.
    Travis SF; Delivoria-Papadopoulos M
    Ann Clin Lab Sci; 1982; 12(2):89-98. PubMed ID: 6280578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunologic study of the age-related loss of activity of six enzymes in the red cells from newborn infants and adults--evidence for a fetal type of erythrocyte phosphofructokinase.
    Kahn A; Boyer C; Cottreau D; Marie J; Boivin P
    Pediatr Res; 1977 Apr; 11(4):271-6. PubMed ID: 139592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Red cell metabolic alterations in postnatal life in term infants: glycolytic intermediates and adenosine triphosphate.
    Travis SF; Kumar SP; Delivoria-Papadopoulos M
    Pediatr Res; 1981 Jan; 15(1):34-7. PubMed ID: 7208166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High pyruvate kinase activity causes low concentration of 2,3-diphosphoglycerate in fetal rabbit red cells.
    Jelkmann W; Bauer C
    Pflugers Arch; 1978 Jul; 375(2):189-95. PubMed ID: 29278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of red cell enzymes in newborn infants.
    Travis SF; O'Neal PL
    Ann Clin Lab Sci; 1983; 13(1):67-75. PubMed ID: 6220667
    [No Abstract]   [Full Text] [Related]  

  • 11. Heterogeneity of human platelets. V. Differences in glycolytic and related enzymes with possible relation to platelet age.
    Karpatkin S; Strick N
    J Clin Invest; 1972 May; 51(5):1235-43. PubMed ID: 4262550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incubation studies on human red cells utilizing glucose or inosine under various conditions.
    Jablonska E; Bishop C
    J Lab Clin Med; 1975 Oct; 86(4):605-15. PubMed ID: 240898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of pH-induced changes of the glycolysis of human erythrocytes.
    Rapoport I; Rapoport TA; Rapoport SM
    Acta Biol Med Ger; 1978; 37(3):393-401. PubMed ID: 32713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycolysis in Plasmodium falciparum results in modulation of host enzyme activities.
    Mehta M; Sonawat HM; Sharma S
    J Vector Borne Dis; 2006 Sep; 43(3):95-103. PubMed ID: 17024857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental changes of mouse red cell pyruvate kinase.
    Gilman JG; Jenkins GM
    Biomed Biochim Acta; 1983; 42(11-12):S273-7. PubMed ID: 6675702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Erythrocyte metabolic alterations in type I diabetes: relationship to metabolic control.
    Cauchie P; Vertongen F; Bosson D; Dorchy H
    Ann Biol Clin (Paris); 1992; 50(1):9-13. PubMed ID: 1443791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Hexokinase activity of erythrocytes in cancer patients].
    Sensini A; Braussi M; Spadoni M; Giacchi R
    Quad Sclavo Diagn; 1981 Dec; 17(4):431-7. PubMed ID: 7347823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics of hexokinase, pyruvate kinase, and glucose-6-phosphate dehydrogenase during adult and neonatal reticulocyte maturation.
    Jansen G; Koenderman L; Rijksen G; Cats BP; Staal GE
    Am J Hematol; 1985 Nov; 20(3):203-15. PubMed ID: 4061449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of copper on red cell enzyme activities.
    Boulard M; Blume KG; Beutler E
    J Clin Invest; 1972 Feb; 51(2):459-61. PubMed ID: 4257805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Kinetics of erythrocyte populations in newborn infants with hyperbilirubinemia].
    Buonocore G; De Biase L; Cantarini A; Bagnoli F; Gatti G; Bracci R
    Boll Soc Ital Biol Sper; 1983 May; 59(5):621-5. PubMed ID: 6882560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.