These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 7255664)

  • 1. A Monte Carlo treatment of the decay of 125I.
    Charlton DE; Booz J
    Radiat Res; 1981 Jul; 87(1):10-23. PubMed ID: 7255664
    [No Abstract]   [Full Text] [Related]  

  • 2. The Auger effect in physical and biological research.
    Nikjoo H; Emfietzoglou D; Charlton DE
    Int J Radiat Biol; 2008 Dec; 84(12):1011-26. PubMed ID: 19061125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CELLDOSE: a Monte Carlo code to assess electron dose distribution--S values for 131I in spheres of various sizes.
    Champion C; Zanotti-Fregonara P; Hindié E
    J Nucl Med; 2008 Jan; 49(1):151-7. PubMed ID: 18077517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo simulation of Auger-electron spectra.
    Grau Carles A; Kossert K
    Appl Radiat Isot; 2009 Jan; 67(1):192-6. PubMed ID: 19013824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmid DNA breakage by decay of DNA-associated auger emitters: experiments with 123I/125I-iodoHoechst 33258.
    Lobachevsky PN; Martin RF
    Int J Radiat Biol; 2004; 80(11-12):915-20. PubMed ID: 15764402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved radial dose function estimation using current version MCNP Monte-Carlo simulation: Model 6711 and ISC3500 125I brachytherapy sources.
    Duggan DM
    Appl Radiat Isot; 2004 Dec; 61(6):1443-50. PubMed ID: 15388146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Some consequences of the Auger effect: fluorescence yield, charge potential, and energy imparted.
    Charlton DE; Pomplun E; Booz J
    Radiat Res; 1987 Sep; 111(3):553-64. PubMed ID: 3659287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of methods to calculate biological effectiveness (RBE) from Monte Carlo simulations.
    Taschereau R; Roy R; Pouliot J
    Med Dosim; 2003; 28(1):21-6. PubMed ID: 12747614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subcellular S-factors for low-energy electrons: a comparison of Monte Carlo simulations and continuous-slowing-down calculations.
    Emfietzoglou D; Kostarelos K; Hadjidoukas P; Bousis C; Fotopoulos A; Pathak A; Nikjoo H
    Int J Radiat Biol; 2008 Dec; 84(12):1034-44. PubMed ID: 19061127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Monte Carlo (MC) based individual calibration method for in vivo x-ray fluorescence analysis (XRF).
    Hansson M; Isaksson M
    Phys Med Biol; 2007 Apr; 52(7):2009-19. PubMed ID: 17374924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational methods in coupled electron-ion Monte Carlo simulations.
    Pierleoni C; Ceperley DM
    Chemphyschem; 2005 Sep; 6(9):1872-8. PubMed ID: 16088971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A compilation of microdosimetry for uniformly distributed Auger emitters used in medicine.
    Chen J
    Int J Radiat Biol; 2008 Dec; 84(12):1027-33. PubMed ID: 19061126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calculated strand breaks from (125)I in coiled DNA.
    Goorley T; Terrissol M; Nikjoo H
    Int J Radiat Biol; 2008 Dec; 84(12):1050-6. PubMed ID: 19061129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radial secondary electron dose profiles and biological effects in light-ion beams based on analytical and Monte Carlo calculations using distorted wave cross sections.
    Wiklund K; Olivera GH; Brahme A; Lind BK
    Radiat Res; 2008 Jul; 170(1):83-92. PubMed ID: 18582149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calculations of cellular microdosimetry parameters for alpha particles and electrons.
    Tung CJ; Liu CS; Wang JP; Chang SL
    Appl Radiat Isot; 2004 Nov; 61(5):739-43. PubMed ID: 15308137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of the multiple scattering of electrons in Monte Carlo simulation of LINACS.
    Vilches M; García-Pareja S; Guerrero R; Anguiano M; Lallena AM
    Radiother Oncol; 2008 Jan; 86(1):104-8. PubMed ID: 18086502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo simulation of energy spectra for (123)I imaging.
    Tanaka M; Uehara S; Kojima A; Matsumoto M
    Phys Med Biol; 2007 Aug; 52(15):4409-25. PubMed ID: 17634641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A scalable parallel Monte Carlo method for free energy simulations of molecular systems.
    Khan MO; Kennedy G; Chan DY
    J Comput Chem; 2005 Jan; 26(1):72-7. PubMed ID: 15529329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The orientation parameter for energy transfer in restricted geometries including block copolymer interfaces: a Monte Carlo study.
    Yang J; Winnik MA
    J Phys Chem B; 2005 Oct; 109(39):18408-17. PubMed ID: 16853370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 131I radiation dose distribution in metastases of thyroid carcinoma.
    Eterovic D; Markovic V; Punda A; Antunovic Z
    J Nucl Med; 2009 May; 50(5):833-4; author reply 834. PubMed ID: 19372490
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.