BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 7257838)

  • 1. The developing mesencephalic reticular formation: changes in responsiveness during ontogeny of the rat.
    Tamásy V; Korányi L; Lissák K
    Acta Physiol Acad Sci Hung; 1980; 56(2):187-201. PubMed ID: 7257838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiunits in the mesencephalic reticular formation: ontogenetic development of wakefulness and sleep cycle in the rat.
    Tamásy V; Korányi L
    Neurosci Lett; 1980 Apr; 17(1-2):143-7. PubMed ID: 7052456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early postnatal development of wakefulness-sleep cycle and neuronal responsiveness: a multiunit activity study on freely moving newborn rat.
    Tamásy V; Korányi L; Lissák K
    Electroencephalogr Clin Neurophysiol; 1980 Jul; 49(1-2):102-11. PubMed ID: 6159151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiunit activity in the mesencephalic reticular formation and septal area of freely moving newborn rat.
    Tamásy V; Korányi L; Lissák K
    Brain Res Bull; 1979; 4(6):715-9. PubMed ID: 230885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Steroid anaesthesia: alphadione depresses multiunit activity in the mesencephalic reticular formation.
    Tamásy V; Korányi L; Lissák K
    Acta Physiol Hung; 1983; 61(4):195-204. PubMed ID: 6650189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modifications of acoustic habituation by interruption of visual input in quipazine treated cats.
    Cervantes M; Guzmán-Flores C
    Bol Estud Med Biol; 1989; 37(1-2):28-35. PubMed ID: 2803471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stochastic properties of spontaneous unit discharges in somatosensory cortex and mesencephalic reticular formation during sleep-waking states.
    Yamamoto M; Nakahama H
    J Neurophysiol; 1983 May; 49(5):1182-98. PubMed ID: 6864245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Dynamics of the neuronal activity of midbrain reticular nuclei in the sleep-wakefulness cycle].
    Oniani TN; Gvetadze LB; Mandzhavidze ShD
    Neirofiziologiia; 1984; 16(5):678-90. PubMed ID: 6514063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of sodium pentobarbital upon cardiovascular responses to mesencephalic reticular stimulation in rats.
    Kacelnik A; Segura ET
    Acta Physiol Lat Am; 1975; 25(4):332-8. PubMed ID: 1234700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Influence of solitary tract nucleus stimulation on activity of thalamic reticular nucleus and mesencephalic reticular formation of the brain].
    Nanobashvili ZI; Khizanishvili NA; Bilanishvili IG
    Georgian Med News; 2009 Apr; (169):74-8. PubMed ID: 19430050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Firing rates and patterns of midbrain reticular neurons during steady and transitional states of the sleep-waking cycle.
    Steriade M; Oakson G; Ropert N
    Exp Brain Res; 1982; 46(1):37-51. PubMed ID: 7067790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of morphine on sensory-evoked responses recorded from central gray, reticular formation, thalamus, hypothalamus, limbic system, basal ganglia, dorsal raphe, locus ceruleus, and pineal body.
    Dafny N; Marchand J; McClung R; Salamy J; Sands S; Wachtendorf H; Burks TF
    J Neurosci Res; 1980; 5(5):399-412. PubMed ID: 7441794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of a dominant focus in the midbrain reticular formation on the functional state of the motor analyzer].
    Grechushnikova LS
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1980; 30(6):1272-8. PubMed ID: 7467849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single cell activity patterns of pedunculopontine tegmentum neurons across the sleep-wake cycle in the freely moving rats.
    Datta S; Siwek DF
    J Neurosci Res; 2002 Nov; 70(4):611-21. PubMed ID: 12404515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurotoxic lesion of the mesencephalic reticular formation and/or the posterior hypothalamus does not alter waking in the cat.
    Denoyer M; Sallanon M; Buda C; Kitahama K; Jouvet M
    Brain Res; 1991 Jan; 539(2):287-303. PubMed ID: 1675907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of REM sleep to Fos and FRA expression in the vestibular nuclei of rat leading to vestibular adaptation during the STS-90 Neurolab Mission.
    Pompeiano O
    Arch Ital Biol; 2007 Jan; 145(1):55-85. PubMed ID: 17274184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Changes in the phasic activity of neuron microsystems of the somatosensory cortex of the cat during extinction of activation reactions to unreinforced stimuli].
    Kratin IuG; Panteleev SS; Kalinina NM; Chukova SV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1986; 36(2):359-67. PubMed ID: 3716604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Afferent and efferent connections of the mesencephalic reticular formation in goldfish.
    Luque MA; Pérez-Pérez MP; Herrero L; Torres B
    Brain Res Bull; 2008 Mar; 75(2-4):480-4. PubMed ID: 18331918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of spontaneous activity of mesencephalic reticular neurones in the waking state and during pentobarbital anaesthesia.
    Syka J; Popelár J; Radil-Weiss T
    Physiol Bohemoslov; 1977; 26(1):21-30. PubMed ID: 140397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dopaminergic mesencephalic systems and behavioral performance in very old rats.
    Sanchez HL; Silva LB; Portiansky EL; Herenu CB; Goya RG; Zuccolilli GO
    Neuroscience; 2008 Jul; 154(4):1598-606. PubMed ID: 18554807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.