BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 7257939)

  • 1. Development of GABA-accumulating neurons and glial cells in the rat visual cortex.
    Chronwall BM; Wolff JR
    Adv Biochem Psychopharmacol; 1981; 29():453-8. PubMed ID: 7257939
    [No Abstract]   [Full Text] [Related]  

  • 2. Prenatal and postnatal development of GABA-accumulating cells in the occipital neocortex of rat.
    Chronwall B; Wolff JR
    J Comp Neurol; 1980 Mar; 190(1):187-208. PubMed ID: 7381052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Turnover of gamma-aminobutyric acid (GABA) in neurons and glial cells of the chick embryo in culture].
    Dessort D; Maitre M; Mandel P
    C R Seances Acad Sci III; 1982 Nov; 295(9):537-42. PubMed ID: 6819068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The migration and neurochemical differentiation of gamma-aminobutyric acid (GABA)-immunoreactive neurons in rat visual cortex as demonstrated by a combined immunocytochemical-autoradiographic technique.
    Miller MW
    Brain Res; 1986 Jul; 393(1):41-6. PubMed ID: 3524756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calretinin-immunoreactive local circuit neurons in area 17 of the cynomolgus monkey, Macaca fascicularis.
    Meskenaite V
    J Comp Neurol; 1997 Mar; 379(1):113-32. PubMed ID: 9057116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Postnatal development and localization of an N-acetylgalactosamine containing glycoconjugate associated with nonpyramidal neurons in cat visual cortex.
    Schweizer M; Streit WJ; Müller CM
    J Comp Neurol; 1993 Mar; 329(3):313-27. PubMed ID: 7681454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Birth-date dependent alignment of GABAergic neurons occurs in a different pattern from that of non-GABAergic neurons in the developing mouse visual cortex.
    Yozu M; Tabata H; Nakajima K
    Neurosci Res; 2004 Aug; 49(4):395-403. PubMed ID: 15236865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Double labeling of GABA and cytochrome oxidase in the macaque visual cortex: quantitative EM analysis.
    Nie F; Wong-Riley MT
    J Comp Neurol; 1995 May; 356(1):115-31. PubMed ID: 7629306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of chloride homeostasis in albino and pigmented rat visual cortex neurons.
    Diykov D; Barmashenko G; Hoffmann KP
    Neuroreport; 2008 Mar; 19(5):595-8. PubMed ID: 18388745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Stratified changes in neuronal and glial RNA content in visual and motor cortex cells during hyper- and hypofunction of the visual analyzer].
    Malinauskaĭte LD; Pevzner LZ
    Dokl Akad Nauk SSSR; 1977; 235(5):1219-21. PubMed ID: 891356
    [No Abstract]   [Full Text] [Related]  

  • 11. Development of GABA-ergic system in rat visual cortex.
    Wolff JR; Balcar VJ; Zetzsche T; Böttcher H; Schmechel DE; Chronwall BM
    Adv Exp Med Biol; 1984; 181():215-39. PubMed ID: 6099691
    [No Abstract]   [Full Text] [Related]  

  • 12. Developmental changes of GABAergic synapses formed between primary cultured cortical neurons.
    Kato-Negishi M; Muramoto K; Kawahara M; Kuroda Y; Ichikawa M
    Brain Res Dev Brain Res; 2004 Sep; 152(2):99-108. PubMed ID: 15351497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uptake of GABA in dispersed cell cultures of postnatal rat cerebellum: an electron microscope autoradiographic study.
    Burry RW; Lasher RS
    Brain Res; 1975 May; 88(3):502-7. PubMed ID: 1139292
    [No Abstract]   [Full Text] [Related]  

  • 14. Selectivity of neuronal [3H]GABA accumulation in the visual cortex as revealed by Golgi staining of the labeled neurons.
    Somogyi P; Freund TF; Halász N; Kisvárday ZF
    Brain Res; 1981 Nov; 225(2):431-6. PubMed ID: 6171325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation between anticonvulsant activity and inhibitory action on glial gamma-aminobutyric acid uptake of the highly selective mouse gamma-aminobutyric acid transporter 1 inhibitor 3-hydroxy-4-amino-4,5,6,7-tetrahydro-1,2-benzisoxazole and its N-alkylated analogs.
    White HS; Sarup A; Bolvig T; Kristensen AS; Petersen G; Nelson N; Pickering DS; Larsson OM; Frølund B; Krogsgaard-Larsen P; Schousboe A
    J Pharmacol Exp Ther; 2002 Aug; 302(2):636-44. PubMed ID: 12130726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GABA, a forgotten gliotransmitter.
    Angulo MC; Le Meur K; Kozlov AS; Charpak S; Audinat E
    Prog Neurobiol; 2008 Nov; 86(3):297-303. PubMed ID: 18786601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Axosomatic synapses in the visual cortex of adult rat. A comparison between GABA-accumulating and other neurons.
    Wolff JR; Chronwall BM
    J Neurocytol; 1982 Jun; 11(3):409-25. PubMed ID: 7097314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GABA(A) receptor diversity and pharmacology.
    Möhler H
    Cell Tissue Res; 2006 Nov; 326(2):505-16. PubMed ID: 16937111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-ethylmaleimide increases release probability at GABAergic synapses in layer I of the mouse visual cortex.
    Kirmse K; Kirischuk S
    Eur J Neurosci; 2006 Nov; 24(10):2741-8. PubMed ID: 17156200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conditionally immortalized cell lines, engineered to produce and release GABA, modulate the development of behavioral seizures.
    Thompson K; Anantharam V; Behrstock S; Bongarzone E; Campagnoni A; Tobin AJ
    Exp Neurol; 2000 Feb; 161(2):481-9. PubMed ID: 10686070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.