These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 7258898)

  • 1. [Utilization of some analogues of glycerophosphate by the sulphate-reducing bacteria "Desulfovibrio vulgaris" (author's transl)].
    Domka F; Szulczynski M
    Ann Microbiol (Paris); 1981; 132A(1):107-14. PubMed ID: 7258898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of organic substrate concentration on activity for microbiological reduction of sulfates.
    Domka F; Szulxzyński M
    Acta Microbiol Pol; 1979; 28(3):237-44. PubMed ID: 92173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on sulfite reduction by Desulfovibrio vulgaris.
    Domka F; Szulczyński M
    Acta Microbiol Pol; 1981; 30(3):247-53. PubMed ID: 6174026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on dissimilatory reduction of sulphates.
    Domka F; Stawicki S; Szulczyński M
    Acta Microbiol Pol; 1979; 28(1):79-84. PubMed ID: 87119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ethanol utilization by sulfate-reducing bacteria: an experimental and modeling study.
    Nagpal S; Chuichulcherm S; Livingston A; Peeva L
    Biotechnol Bioeng; 2000 Dec; 70(5):533-43. PubMed ID: 11042550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulphate respiration from hydrogen in Desulfovibrio bacteria: a structural biology overview.
    Matias PM; Pereira IA; Soares CM; Carrondo MA
    Prog Biophys Mol Biol; 2005 Nov; 89(3):292-329. PubMed ID: 15950057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Study on constructive metabolism of sulphate reducing bacteria using C-14].
    Sorokin IuI
    Mikrobiologiia; 1966; 35(6):967-77. PubMed ID: 6003015
    [No Abstract]   [Full Text] [Related]  

  • 8. [Effect of corrosion inhibitor on adhesion of sulfate-reducing bacteria to steel and their production of exopolymer complex].
    Purishch LM; Asaulenko LH; Koptieva ZhP; Kozlova IP
    Mikrobiol Z; 2004; 66(4):78-85. PubMed ID: 15515905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth and cometabolic reduction kinetics of a uranium- and sulfate-reducing Desulfovibrio/Clostridia mixed culture: Temperature effects.
    Boonchayaanant B; Kitanidis PK; Criddle CS
    Biotechnol Bioeng; 2008 Apr; 99(5):1107-19. PubMed ID: 17929318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxic effects of dissolved heavy metals on Desulfovibrio vulgaris and Desulfovibrio sp. strains.
    Cabrera G; Pérez R; Gómez JM; Abalos A; Cantero D
    J Hazard Mater; 2006 Jul; 135(1-3):40-6. PubMed ID: 16386832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulphate-reducing bacteria, palladium and the reductive dehalogenation of chlorinated aromatic compounds.
    Baxter-Plant VS; Mikheenko IP; Macaskie LE
    Biodegradation; 2003 Apr; 14(2):83-90. PubMed ID: 12877464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Desulfovibrio idahonensis sp. nov., sulfate-reducing bacteria isolated from a metal(loid)-contaminated freshwater sediment.
    Sass H; Ramamoorthy S; Yarwood C; Langner H; Schumann P; Kroppenstedt RM; Spring S; Rosenzweig RF
    Int J Syst Evol Microbiol; 2009 Sep; 59(Pt 9):2208-14. PubMed ID: 19605721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Stages of biofilm formation by sulfate-reducing bacteria].
    Asaulenko LH; Purishch LM; Kozlova IP
    Mikrobiol Z; 2004; 66(3):72-9. PubMed ID: 15456221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hopanoid production by Desulfovibrio bastinii isolated from oilfield formation water.
    Blumenberg M; Oppermann BI; Guyoneaud R; Michaelis W
    FEMS Microbiol Lett; 2009 Apr; 293(1):73-8. PubMed ID: 19222571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene expression analysis of the mechanism of inhibition of Desulfovibrio vulgaris Hildenborough by nitrate-reducing, sulfide-oxidizing bacteria.
    Haveman SA; Greene EA; Voordouw G
    Environ Microbiol; 2005 Sep; 7(9):1461-5. PubMed ID: 16104868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial transformation of nitroaromatic compounds under anaerobic conditions.
    Gorontzy T; Küver J; Blotevogel KH
    J Gen Microbiol; 1993 Jun; 139 Pt 6():1331-6. PubMed ID: 8360625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioremediation of chromate: thermodynamic analysis of the effects of Cr(VI) on sulfate-reducing bacteria.
    Chardin B; Dolla A; Chaspoul F; Fardeau ML; Gallice P; Bruschi M
    Appl Microbiol Biotechnol; 2002 Nov; 60(3):352-60. PubMed ID: 12436319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Staining of sulfate-reducing bacteria with hexacyanoferrat-compounds (cultural and cytochemical evidence of Fe) (author's transl)].
    Stübner G
    Zentralbl Bakteriol Orig A; 1978 Apr; 240(2):246-50. PubMed ID: 77605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dependence of sulphate reduction and oxygen utilization on a cytochrome in Desulphovibrio.
    POSTGATE JR
    Biochem J; 1954 Jun; 58(330th Meeting):ix. PubMed ID: 13198885
    [No Abstract]   [Full Text] [Related]  

  • 20. Kinetics of methyl viologen reduction by hydrogen catalyzed by hydrogenase from Desulfovibrio vulgaris.
    Okura I; Nakamura K; Nakamura S
    J Inorg Biochem; 1981 Apr; 14(2):155-61. PubMed ID: 7252493
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.