These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 7259139)

  • 1. [Characteristics of the electrophysical parameters of the growing mycelium of Act. nodosus, a producer of amphotericin B].
    Sargaev PM; Vekshin GA; Sedykh NV
    Antibiotiki; 1981 May; 26(5):349-52. PubMed ID: 7259139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Use of acridine yperite in the selection of Act. nodosus, a producer of amphotericin B].
    Bol'shakova EN; Borzov VV; Bondarev GN
    Antibiotiki; 1979 Jan; 24(1):3-6. PubMed ID: 426495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Natural variability of the producer of amphotericin Act. nodosus Trejo in relation to antibiotic production].
    Zhukova RA; Tsyganov VA; Malyshkina MA
    Antibiotiki; 1968 Apr; 13(4):297-302. PubMed ID: 4970744
    [No Abstract]   [Full Text] [Related]  

  • 4. [Comparative study of the action of streptomycin on the variability of levorin and amphotericin B producers].
    Shabas MN; Lanskaia LN; Zhuhova RA; Raskatova TM
    Antibiotiki; 1977 May; 22(5):396-400. PubMed ID: 879722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis and manipulation of amphotericin biosynthetic genes by means of modified phage KC515 transduction techniques.
    Carmody M; Byrne B; Murphy B; Breen C; Lynch S; Flood E; Finnan S; Caffrey P
    Gene; 2004 Dec; 343(1):107-15. PubMed ID: 15563836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic analysis of nystatin and amphotericin biosynthesis.
    Zotchev S; Caffrey P
    Methods Enzymol; 2009; 459():243-58. PubMed ID: 19362643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amphotericin B biosynthesis in Streptomyces nodosus: quantitative analysis of metabolism via LC-MS/MS based metabolomics for rational design.
    Zhang B; Zhou YT; Jiang SX; Zhang YH; Huang K; Liu ZQ; Zheng YG
    Microb Cell Fact; 2020 Jan; 19(1):18. PubMed ID: 32005241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Spectrophotometric analysis of amphotericin B in technological objects].
    Bershteĭn IIa; Vlasenko AIu; Bershteĭn EM; Vekshin GA
    Antibiotiki; 1984 Jan; 29(1):19-24. PubMed ID: 6696398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of amphotericin B-14C by Streptomyces nodosus fermentation, and preparation of the amphotericin B-14C-methyl-ester.
    Linke HA; Mechlinski W; Schaffner CP
    J Antibiot (Tokyo); 1974 Mar; 27(3):155-60. PubMed ID: 4836651
    [No Abstract]   [Full Text] [Related]  

  • 10. [Cytomorphology of natural mutants of Actinomyces nodosus Trejo producing amphotericin B under submerged conditions].
    Zhukova RA; Zhuravleva NP
    Antibiotiki; 1972 Mar; 17(3):235-9. PubMed ID: 5030775
    [No Abstract]   [Full Text] [Related]  

  • 11. Streptomyces nodosus host strains optimized for polyene glycosylation engineering.
    Stephens N; Rawlings B; Caffrey P
    Biosci Biotechnol Biochem; 2012; 76(2):384-7. PubMed ID: 22313766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative metabolomics analysis of amphotericin B high-yield mechanism for metabolic engineering.
    Zhang B; Chen Y; Jiang SX; Cai X; Huang K; Liu ZQ; Zheng YG
    Microb Cell Fact; 2021 Mar; 20(1):66. PubMed ID: 33750383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ detection of antibiotic amphotericin B produced in Streptomyces nodosus using Raman microspectroscopy.
    Miyaoka R; Hosokawa M; Ando M; Mori T; Hamaguchi HO; Takeyama H
    Mar Drugs; 2014 May; 12(5):2827-39. PubMed ID: 24828290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Morphology of sporophores and spores in spontaneous mutants of Actinomyces nodosus Trejo producer of amphotericin].
    Zhukova RA; Zhuravleva NP; Morozov VM
    Antibiotiki; 1970 Sep; 15(9):785-9. PubMed ID: 5489725
    [No Abstract]   [Full Text] [Related]  

  • 15. High frequency transformation of the Amphotericin-producing bacterium Streptomyces nodosus.
    Nikodinovic J; Barrow KD; Chuck JA
    J Microbiol Methods; 2003 Oct; 55(1):273-7. PubMed ID: 14500018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of increase in dielectric values on specific absorption rate (SAR) in eye and head tissues following 900, 1800 and 2450 MHz radio frequency (RF) exposure.
    Keshvari J; Keshvari R; Lang S
    Phys Med Biol; 2006 Mar; 51(6):1463-77. PubMed ID: 16510956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Streptomyces nodosus sp. n., the amphotericin-producing organism.
    TREJO WH; BENNETT RE
    J Bacteriol; 1963 Feb; 85(2):436-9. PubMed ID: 13994057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amphotericin B: an update.
    Abu-Salah KM
    Br J Biomed Sci; 1996 Jun; 53(2):122-33. PubMed ID: 8757689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics of amphotericin B-induced endothelial cell injury.
    Cutaia M; Bullard SR; Rudio K; Rounds S
    J Lab Clin Med; 1993 Feb; 121(2):244-56. PubMed ID: 8381844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.