These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 7259471)

  • 1. Relationships between tibial rotary torque and knee flexion/extension after tendon transplant surgery.
    Osternig LR; Bates BT; Tseng YL; James SL
    Arch Phys Med Rehabil; 1981 Aug; 62(8):381-5. PubMed ID: 7259471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of varied hip angles on the generation of internal tibial rotary torque.
    Oshimo TA; Greene TA; Jensen GM; Lopopolo RB
    Med Sci Sports Exerc; 1983; 15(6):529-34. PubMed ID: 6656564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of movement speed and joint position on knee flexor torque in healthy and post-surgical subjects.
    Osternig LR; James CR; Bercades D
    Eur J Appl Physiol Occup Physiol; 1999 Jul; 80(2):100-6. PubMed ID: 10408319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined knee loading states that generate high anterior cruciate ligament forces.
    Markolf KL; Burchfield DM; Shapiro MM; Shepard MF; Finerman GA; Slauterbeck JL
    J Orthop Res; 1995 Nov; 13(6):930-5. PubMed ID: 8544031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Angle- and velocity-specific alterations in torque and semg activity of the quadriceps and hamstrings during isokinetic extension-flexion movements.
    Croce RV; Miller JP
    Electromyogr Clin Neurophysiol; 2006; 46(2):83-100. PubMed ID: 16795998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of combined knee loadings on posterior cruciate ligament force generation.
    Markolf KL; Slauterbeck JL; Armstrong KL; Shapiro MM; Finerman GA
    J Orthop Res; 1996 Jul; 14(4):633-8. PubMed ID: 8764874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinematics of the knee at high flexion angles: an in vitro investigation.
    Li G; Zayontz S; DeFrate LE; Most E; Suggs JF; Rubash HE
    J Orthop Res; 2004 Jan; 22(1):90-5. PubMed ID: 14656665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Test-retest reliability of cardinal plane isokinetic hip torque and EMG.
    Claiborne TL; Timmons MK; Pincivero DM
    J Electromyogr Kinesiol; 2009 Oct; 19(5):e345-52. PubMed ID: 18845450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The relationship between anterior tibial shear force during a jump landing task and quadriceps and hamstring strength.
    Bennett DR; Blackburn JT; Boling MC; McGrath M; Walusz H; Padua DA
    Clin Biomech (Bristol, Avon); 2008 Nov; 23(9):1165-71. PubMed ID: 18599168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Torque curves produced at the knee during isometric and isokinetic exercise.
    Scudder GN
    Arch Phys Med Rehabil; 1980 Feb; 61(2):68-73. PubMed ID: 7369841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ forces in the human posterior cruciate ligament in response to muscle loads: a cadaveric study.
    Höher J; Vogrin TM; Woo SL; Carlin GJ; Arøen A; Harner CD
    J Orthop Res; 1999 Sep; 17(5):763-8. PubMed ID: 10569489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ forces in the posterolateral structures of the knee under posterior tibial loading in the intact and posterior cruciate ligament-deficient knee.
    Höher J; Harner CD; Vogrin TM; Baek GH; Carlin GJ; Woo SL
    J Orthop Res; 1998 Nov; 16(6):675-81. PubMed ID: 9877391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of rotational laxity of the knee: in vitro comparison of accuracy between the tibia, overlying skin, and foot.
    Alam M; Bull AM; Thomas Rd; Amis AA
    Am J Sports Med; 2011 Dec; 39(12):2575-81. PubMed ID: 21997728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical consequences of PCL deficiency in the knee under simulated muscle loads--an in vitro experimental study.
    Li G; Gill TJ; DeFrate LE; Zayontz S; Glatt V; Zarins B
    J Orthop Res; 2002 Jul; 20(4):887-92. PubMed ID: 12168683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads.
    Gabriel MT; Wong EK; Woo SL; Yagi M; Debski RE
    J Orthop Res; 2004 Jan; 22(1):85-9. PubMed ID: 14656664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tibio-femoral movement in the living knee. A study of weight bearing and non-weight bearing knee kinematics using 'interventional' MRI.
    Johal P; Williams A; Wragg P; Hunt D; Gedroyc W
    J Biomech; 2005 Feb; 38(2):269-76. PubMed ID: 15598453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [A prospective study of the outcome of anterior laxity of the knee after anterior cruciate ligament reconstruction with procedures using two different patellar tendon grafting methods].
    Lerat JL; Moyen B; Mandrino A; Besse JL; Brunet-Guedj E
    Rev Chir Orthop Reparatrice Appar Mot; 1997; 83(3):217-28. PubMed ID: 9255357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Forces in anterior cruciate ligament during simulated weight-bearing flexion with anterior and internal rotational tibial load.
    Lo J; Müller O; Wünschel M; Bauer S; Wülker N
    J Biomech; 2008; 41(9):1855-61. PubMed ID: 18513729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ forces in the anterior cruciate ligament and its bundles in response to anterior tibial loads.
    Sakane M; Fox RJ; Woo SL; Livesay GA; Li G; Fu FH
    J Orthop Res; 1997 Mar; 15(2):285-93. PubMed ID: 9167633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isokinetic torque levels in hemophiliac knee musculature.
    Strickler EM; Greene WB
    Arch Phys Med Rehabil; 1984 Dec; 65(12):766-70. PubMed ID: 6508517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.