These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 7259751)

  • 1. Mechanism of action of oxfenicine on muscle metabolism.
    Higgins AJ; Morville M; Burges RA; Blackburn KJ
    Biochem Biophys Res Commun; 1981 May; 100(1):291-6. PubMed ID: 7259751
    [No Abstract]   [Full Text] [Related]  

  • 2. Oxfenicine diverts rat muscle metabolism from fatty acid to carbohydrate oxidation and protects the ischaemic rat heart.
    Higgins AJ; Morville M; Burges RA; Gardiner DG; Page MG; Blackburn KJ
    Life Sci; 1980 Sep; 27(11):963-70. PubMed ID: 7432098
    [No Abstract]   [Full Text] [Related]  

  • 3. Two mechanisms produce tissue-specific inhibition of fatty acid oxidation by oxfenicine.
    Stephens TW; Higgins AJ; Cook GA; Harris RA
    Biochem J; 1985 Apr; 227(2):651-60. PubMed ID: 4004784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of long-term fasting on the branched chain acylcarnitines and branched chain carnitine acyltransferases.
    Choi YR; Fogle PJ; Bieber LL
    J Nutr; 1979 Jan; 109(1):155-61. PubMed ID: 430209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of hepatic glyceride synthesis.
    Hems DA
    Proc Nutr Soc; 1975 Dec; 34(3):225-31. PubMed ID: 1108028
    [No Abstract]   [Full Text] [Related]  

  • 6. Effect of fatty acids and ketones on the activity of pyruvate dehydrogenase in skeletal-muscle mitochondria.
    Ashour B; Hansford RG
    Biochem J; 1983 Sep; 214(3):725-36. PubMed ID: 6138029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of starvation and diabetes on the sensitivity of carnitine palmitoyltransferase I to inhibition by 4-hydroxyphenylglyoxylate.
    Stephens TW; Harris RA
    Biochem J; 1987 Apr; 243(2):405-12. PubMed ID: 2820379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of acyltransferases in fatty acid utilization.
    Borrebaek B; Christiansen R; Christophersen BO; Bremer J
    Circ Res; 1976 May; 38(5 Suppl 1):I16-21. PubMed ID: 1269090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of pyruvate dehydrogenase in rat heart. Mechanism of regulation of proportions of dephosphorylated and phosphorylated enzyme by oxidation of fatty acids and ketone bodies and of effects of diabetes: role of coenzyme A, acetyl-coenzyme A and reduced and oxidized nicotinamide-adenine dinucleotide.
    Kerbey AL; Randle PJ; Cooper RH; Whitehouse S; Pask HT; Denton RM
    Biochem J; 1976 Feb; 154(2):327-48. PubMed ID: 180974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Promotion of carbohydrate oxidation in the heart by some phenylglyoxylic acids.
    Barnish IT; Cross PE; Danilewicz JC; Dickinson RP; Stopher DA
    J Med Chem; 1981 Apr; 24(4):399-404. PubMed ID: 7265127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on the development of carnitine palmitoyltransferase and fatty acid oxidation in liver mitochondria of neonatal pigs.
    Bieber LL; Markwell MA; Blair M; Helmrath TA
    Biochim Biophys Acta; 1973 Nov; 326(2):145-54. PubMed ID: 4765099
    [No Abstract]   [Full Text] [Related]  

  • 12. Two-center mechanism for the oxidative decarboxylation of pyruvate by the pyruvate decarboxylating component of the pyruvate dehydrogenase complex of pigeon breast muscle.
    Hübner G; Neef H; Schellenberger A
    FEBS Lett; 1978 Feb; 86(1):6-8. PubMed ID: 620829
    [No Abstract]   [Full Text] [Related]  

  • 13. Inhibition of muscle pyruvate dehydrogenase by a polypeptide from growth hormone.
    Aylward JH; Bornstein J; Gould MK; Hall S
    Biochem Biophys Res Commun; 1974 Jul; 59(1):57-61. PubMed ID: 4841334
    [No Abstract]   [Full Text] [Related]  

  • 14. Glucose utilization in heart, diaphragm and skeletal muscle during the fed-to-starved transition.
    Holness MJ; Sugden MC
    Biochem J; 1990 Aug; 270(1):245-9. PubMed ID: 2396984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of pyruvate dehydrogenase activity and citric acid cycle intermediates during high cardiac power generation.
    Sharma N; Okere IC; Brunengraber DZ; McElfresh TA; King KL; Sterk JP; Huang H; Chandler MP; Stanley WC
    J Physiol; 2005 Jan; 562(Pt 2):593-603. PubMed ID: 15550462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carnitine and carnitine palmitoyltransferase in fatty acid oxidation and ketosis.
    Hoppel CL
    Fed Proc; 1982 Oct; 41(12):2853-7. PubMed ID: 7128831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of carnitine in intracellular metabolism.
    Bremer J
    J Clin Chem Clin Biochem; 1990 May; 28(5):297-301. PubMed ID: 2199593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peroxisomal and mitochondrial beta-oxidation of monocarboxylyl-CoA, omega-hydroxymonocarboxylyl-CoA and dicarboxylyl-CoA esters in tissues from untreated and clofibrate-treated rats.
    Vamecq J; Draye JP
    J Biochem; 1989 Aug; 106(2):216-22. PubMed ID: 2808318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorylation coupled to acyl-coenzyme A dehydrogenase-linked oxidation of fatty acids by liver and heart mitochondria.
    Bremer J; Davis EJ
    Biochim Biophys Acta; 1972 Sep; 275(3):298-301. PubMed ID: 5070055
    [No Abstract]   [Full Text] [Related]  

  • 20. Fuel selection in animals.
    Randle PJ
    Biochem Soc Trans; 1986 Oct; 14(5):799-806. PubMed ID: 3536635
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.