These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 7260048)

  • 1. Evidence for two acyl group conformations in some furylacryloyl- and thienylacryloylchymotrypsins: resonance Raman studies of enzyme--substrate intermediates at pH 3.0.
    MacClement BA; Carriere RG; Phelps DJ; Carey PR
    Biochemistry; 1981 Jun; 20(12):3438-47. PubMed ID: 7260048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Details of the acyl-enzyme intermediate and the oxyanion hole in serine protease catalysis.
    Whiting AK; Peticolas WL
    Biochemistry; 1994 Jan; 33(2):552-61. PubMed ID: 8286385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct observation of the titration of substrate carbonyl groups in the active site of alpha-chymotrypsin by resonance Raman spectroscopy.
    Tonge PJ; Carey PR
    Biochemistry; 1989 Aug; 28(16):6701-9. PubMed ID: 2790025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resonance Raman carbonyl frequencies and ultraviolet absorption maxima as indicators of the active site environment in native and unfolded chromophoric acyl-alpha-chymotrypsin.
    Argade PV; Gerke GK; Weber JP; Peticolas WL
    Biochemistry; 1984 Jan; 23(2):299-304. PubMed ID: 6607745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonance Raman and Fourier transform infrared spectroscopic studies of the acyl carbonyl group in [3-(5-methyl-2-thienyl)acryloyl]chymotrypsin: evidence for artifacts in the spectra obtained by both techniques.
    Tonge PJ; Pusztai M; White AJ; Wharton CW; Carey PR
    Biochemistry; 1991 May; 30(19):4790-5. PubMed ID: 2029519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active site properties of the 3C proteinase from hepatitis A virus (a hybrid cysteine/serine protease) probed by Raman spectroscopy.
    Dinakarpandian D; Shenoy B; Pusztai-Carey M; Malcolm BA; Carey PR
    Biochemistry; 1997 Apr; 36(16):4943-8. PubMed ID: 9125516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromophoric cinnamic acid substrates as resonance Raman probes of the active site environment in native and unfolded alpha-chymotrypsin.
    Weber JA; Turpin P; Bernhard SA; Peticolas WL
    Biochemistry; 1986 Apr; 25(8):1912-7. PubMed ID: 3707918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen-bonding in enzyme catalysis. Fourier-transform infrared detection of ground-state electronic strain in acyl-chymotrypsins and analysis of the kinetic consequences.
    White AJ; Wharton CW
    Biochem J; 1990 Sep; 270(3):627-37. PubMed ID: 2241898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Length of the acyl carbonyl bond in acyl-serine proteases correlates with reactivity.
    Tonge PJ; Carey PR
    Biochemistry; 1990 Dec; 29(48):10723-7. PubMed ID: 2271679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of specificity on ligand conformation in acyl-chymotrypsins.
    Johal SS; White AJ; Wharton CW
    Biochem J; 1994 Jan; 297 ( Pt 2)(Pt 2):281-7. PubMed ID: 8297332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alpha-helix dipoles and catalysis: absorption and Raman spectroscopic studies of acyl cysteine proteases.
    Doran JD; Carey PR
    Biochemistry; 1996 Sep; 35(38):12495-502. PubMed ID: 8823185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electric fields in active sites: substrate switching from null to strong fields in thiol- and selenol-subtilisins.
    Dinakarpandian D; Shenoy BC; Hilvert D; McRee DE; McTigue M; Carey PR
    Biochemistry; 1999 May; 38(20):6659-67. PubMed ID: 10350485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resonance Raman evidence for substrate reorginization in the active site of papain.
    Carey PR; Carriere RG; Lynn KR; Schneider H
    Biochemistry; 1976 Jun; 15(11):2387-93. PubMed ID: 1276146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relaxed and perturbed substrate conformations in enzyme active sites: evidence from multichannel resonance raman spectra.
    Storer AC; Lee H; Carey PR
    Biochemistry; 1983 Sep; 22(20):4789-96. PubMed ID: 6626534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis and elimination of protein perturbation in infrared difference spectra of acyl-chymotrypsin ester carbonyl groups by using 13C isotopic substitution.
    White AJ; Drabble K; Ward S; Wharton CW
    Biochem J; 1992 Oct; 287 ( Pt 1)(Pt 1):317-23. PubMed ID: 1417785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of a covalent enzyme-substrate bond by noncovalent interaction with an effector.
    Malhotra OP; Bernhard SA
    Proc Natl Acad Sci U S A; 1973 Jul; 70(7):2077-81. PubMed ID: 4352970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resonance Raman and electronic absorption spectral studies of some beta-(2-furyl)acryloylglyceraldehyde-3-phosphate dehydrogenases.
    Storer AC; Phelps DJ; Carey PR
    Biochemistry; 1981 Jun; 20(12):3454-61. PubMed ID: 7260050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The strength of dehalogenase-substrate hydrogen bonding correlates with the rate of Meisenheimer intermediate formation.
    Dong J; Lu X; Wei Y; Luo L; Dunaway-Mariano D; Carey PR
    Biochemistry; 2003 Aug; 42(31):9482-90. PubMed ID: 12899635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The time dependent UV resonance Raman spectra, conformation, and biological activity of acetylcholine analogues upon binding to acetylcholine binding proteins.
    Wilson KJ; McNamee MG; Peticolas WL
    J Biomol Struct Dyn; 1991 Dec; 9(3):489-509. PubMed ID: 1726137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Raman study of the polarizing forces promoting catalysis in 4-chlorobenzoate-CoA dehalogenase.
    Clarkson J; Tonge PJ; Taylor KL; Dunaway-Mariano D; Carey PR
    Biochemistry; 1997 Aug; 36(33):10192-9. PubMed ID: 9254617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.