BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 7260198)

  • 1. [Correlation between [NAD+]:[NADH] and the "phosphate potential" in liver cytoplasm of developing chicken embryos].
    Ermolaeva LP
    Biokhimiia; 1981 Jun; 46(6):1127-32. PubMed ID: 7260198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Independence of the (NAD+):(NADH) ratio from the adenylic system in the liver cytoplasm of the developing chick embryo].
    Ermolaeva LP; Iurovitskiĭ IuG; Mil'man LS
    Ontogenez; 1979; 10(4):413-6. PubMed ID: 225704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Redox state of the hepatic cells in rats kept on a diet containing 1,2-propanediol].
    Velikiĭ NN; Parkhomets PK; Simonova NYa
    Vopr Pitan; 1975; (5):40-6. PubMed ID: 174317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Role of the oxidation-reduction state and phosphate potential in regulating rat liver gluconeogenesis during inclusion of 1,3-butanediol in the diet].
    Velikiĭ NN; Parkhomets PK; Turganbaeva TM; Chichkovskaia GV; Mogilevich SE
    Vopr Med Khim; 1977; (6):723-8. PubMed ID: 202084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Factors regulating gluconeogenesis in chick embryo liver].
    Ermolaeva LP
    Biokhimiia; 1978 Jul; 43(7):1335-41. PubMed ID: 212130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of ATP/ADP ratio in the control of hepatic gluconeogenesis during the early neonatal period.
    Cuezva JM; Fernández E; Valcarce C; Medina JM
    Biochim Biophys Acta; 1983 Sep; 759(3):292-5. PubMed ID: 6882806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy status and oxidation-reduction status in rat liver at high altitude (3.8 km).
    Reed RD; Pace N
    Aviat Space Environ Med; 1980 May; 51(5):448-53. PubMed ID: 7387568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The relationship between the (NAD+)/(NAD-H) ratio and the adenylate system in the cytoplasm of loach oocytes and embryos].
    Ermolaeva LP; Mil'man LS
    Ontogenez; 1974; 5(5):505-7. PubMed ID: 4377750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Interrelationship between NAD metabolism and DNA synthesis in chicken liver nuclei during ontogenesis].
    Shushevich DI; Fomenko AI; Khalmuradov AG
    Biokhimiia; 1977 Feb; 42(2):251-6. PubMed ID: 192347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic adaptation to hypoxia. Redox state of the cellular free NAD pools, phosphorylation state of the adenylate system and the (Na+-K+)-stimulated ATP-ase in rat liver.
    Kinnula VL; Hassinen I
    Acta Physiol Scand; 1978 Sep; 104(1):109-16. PubMed ID: 211796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal changes in cellular energy following burn injury.
    Gore DC; Rinehart A; Asimakis G
    Burns; 2005 Dec; 31(8):998-1002. PubMed ID: 16280201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Synthesis of ATP and free radicals in an aqueous solution, containing NADH, riboflavin, ADP and inorganic phosphate].
    Lozinova TA; Arutiunian AE
    Biofizika; 1990; 35(6):901-5. PubMed ID: 1965685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Skeletal muscle metabolism in experimental heart failure.
    Bernocchi P; Ceconi C; Pedersini P; Pasini E; Curello S; Ferrari R
    J Mol Cell Cardiol; 1996 Nov; 28(11):2263-73. PubMed ID: 8938580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of NADH-X on cytosolic glycerol-3-phosphate dehydrogenase.
    Prabhakar P; Laboy JI; Wang J; Budker T; Din ZZ; Chobanian M; Fahien LA
    Arch Biochem Biophys; 1998 Dec; 360(2):195-205. PubMed ID: 9851831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of adenosine on intermediary metabolism of isolated hepatocytes.
    Marchand JC; Lavoinne A; Giroz M; Matray F
    Biochimie; 1979; 61(11-12):1273-82. PubMed ID: 231980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The development of gluconeogenesis in rat liver. Controlling factors in the newborn.
    Ballard FJ
    Biochem J; 1971 Sep; 124(2):265-74. PubMed ID: 4333849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gluconeogenesis and redox state.
    Krebs HA
    Hoppe Seylers Z Physiol Chem; 1970 Mar; 351(3):288. PubMed ID: 4316049
    [No Abstract]   [Full Text] [Related]  

  • 18. Influence of ethanol oxidation rate on the lactate/pyruvate ratio and phosphorylation state of the liver in fed rats.
    Pösö AR; Forsander OA
    Acta Chem Scand B; 1976; 30 B(9):801-6. PubMed ID: 188281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The reducing ability of iron chelates by NADH-cytochrome B5 reductase or cytochrome B5 responsible for NADH-supported lipid peroxidation.
    Miura A; Tampo Y; Yonaha M
    Biochem Mol Biol Int; 1995 Sep; 37(1):141-50. PubMed ID: 8653076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of dietary taurine supplementation on GSH and NAD(P)-redox status, lipid peroxidation, and energy metabolism in diabetic precataractous lens.
    Obrosova IG; Stevens MJ
    Invest Ophthalmol Vis Sci; 1999 Mar; 40(3):680-8. PubMed ID: 10067971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.