These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 7260248)

  • 1. Resonance Raman studies of the primary photochemical event in visual pigments.
    Aton B; Doukas AG; Narva D; Callender RH; Dinur U; Honig B
    Biophys J; 1980 Jan; 29(1):79-94. PubMed ID: 7260248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A resonance Raman study of the C=N configurations of octopus rhodopsin, bathorhodopsin, and isorhodopsin.
    Huang L; Deng H; Weng G; Koutalos Y; Ebrey T; Groesbeek M; Lugtenburg J; Tsuda M; Callender RH
    Biochemistry; 1996 Jul; 35(26):8504-10. PubMed ID: 8679611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resonance Raman studies of bathorhodopsin: evidence for a protonated Schiff base linkage.
    Eyring G; Mathies R
    Proc Natl Acad Sci U S A; 1979 Jan; 76(1):33-7. PubMed ID: 284349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assignment of fingerprint vibrations in the resonance Raman spectra of rhodopsin, isorhodopsin, and bathorhodopsin: implications for chromophore structure and environment.
    Palings I; Pardoen JA; van den Berg E; Winkel C; Lugtenburg J; Mathies RA
    Biochemistry; 1987 May; 26(9):2544-56. PubMed ID: 3607032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonance Raman spectroscopy of octopus rhodopsin and its photoproducts.
    Pande C; Pande A; Yue KT; Callender R; Ebrey TG; Tsuda M
    Biochemistry; 1987 Aug; 26(16):4941-7. PubMed ID: 3663635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A study of the Schiff base mode in bovine rhodopsin and bathorhodopsin.
    Deng H; Callender RH
    Biochemistry; 1987 Nov; 26(23):7418-26. PubMed ID: 3427083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fourier-transform infrared spectroscopy applied to rhodopsin. The problem of the protonation state of the retinylidene Schiff base re-investigated.
    Siebert F; Mäntele W; Gerwert K
    Eur J Biochem; 1983 Oct; 136(1):119-27. PubMed ID: 6311543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resonance Raman spectroscopy of squid and bovine visual pigments: the primary photochemistry in visual transduction.
    Sulkes M; Lewis A; Marcus MA
    Biochemistry; 1978 Oct; 17(22):4712-22. PubMed ID: 728380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fourier-transform infrared difference spectroscopy of rhodopsin and its photoproducts at low temperature.
    Bagley KA; Balogh-Nair V; Croteau AA; Dollinger G; Ebrey TG; Eisenstein L; Hong MK; Nakanishi K; Vittitow J
    Biochemistry; 1985 Oct; 24(22):6055-71. PubMed ID: 4084506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromophore structure in lumirhodopsin and metarhodopsin I by time-resolved resonance Raman microchip spectroscopy.
    Pan D; Mathies RA
    Biochemistry; 2001 Jul; 40(26):7929-36. PubMed ID: 11425321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A resonance Raman study of octopus bathorhodopsin with deuterium labeled retinal chromophores.
    Deng H; Manor D; Weng G; Rath P; Koutalos Y; Ebrey T; Gebhard R; Lugtenburg J; Tsuda M; Callender RH
    Photochem Photobiol; 1991 Dec; 54(6):1001-7. PubMed ID: 1775525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative study of the infrared difference spectra for octopus and bovine rhodopsins and their bathorhodopsin photointermediates.
    Bagley KA; Eisenstein L; Ebrey TG; Tsuda M
    Biochemistry; 1989 Apr; 28(8):3366-73. PubMed ID: 2742842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bathoproducts of rhodopsin, isorhodopsin I, and isorhodopsin II.
    Mao B; Ebrey TG; Crouch R
    Biophys J; 1980 Feb; 29(2):247-56. PubMed ID: 7260250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonance Raman microprobe spectroscopy of rhodopsin mutants: effect of substitutions in the third transmembrane helix.
    Lin SW; Sakmar TP; Franke RR; Khorana HG; Mathies RA
    Biochemistry; 1992 Jun; 31(22):5105-11. PubMed ID: 1351402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The nature of the primary photochemical events in rhodopsin and isorhodopsin.
    Birge RR; Einterz CM; Knapp HM; Murray LP
    Biophys J; 1988 Mar; 53(3):367-85. PubMed ID: 2964878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raman microscope and quantum yield studies on the primary photochemistry of A2-visual pigments.
    Barry B; Mathies RA; Pardoen JA; Lugtenburg J
    Biophys J; 1987 Oct; 52(4):603-10. PubMed ID: 3676440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resonance Raman studies of bovine metarhodopsin I and metarhodopsin II.
    Doukas AG; Aton B; Callender RH; Ebrey TG
    Biochemistry; 1978 Jun; 17(12):2430-5. PubMed ID: 678522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interpretation of the resonance Raman spectrum of bathorhodopsin based on visual pigment analogues.
    Eyring G; Curry B; Mathies R; Fransen R; Palings I; Lugtenburg J
    Biochemistry; 1980 May; 19(11):2410-8. PubMed ID: 7387982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resonance Raman study of the primary photochemistry of visual pigments. Hypsorhodopsin.
    Pande AJ; Callender RH; Ebrey TG; Tsuda M
    Biophys J; 1984 Mar; 45(3):573-6. PubMed ID: 6713069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoisomerization efficiency in UV-absorbing visual pigments: protein-directed isomerization of an unprotonated retinal Schiff base.
    Tsutsui K; Imai H; Shichida Y
    Biochemistry; 2007 May; 46(21):6437-45. PubMed ID: 17474760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.