These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 7260248)

  • 21. Molecular dynamics of trans-cis isomerization in bathorhodopsin.
    Birge RR; Hubbard LM
    Biophys J; 1981 Jun; 34(3):517-34. PubMed ID: 7248472
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid-flow resonance Raman spectroscopy of photolabile molecules: rhodopsin and isorhodopsin.
    Mathies R; Oseroff AR; Stryer L
    Proc Natl Acad Sci U S A; 1976 Jan; 73(1):1-5. PubMed ID: 1061102
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of the factors that influence the C=N stretching frequency of polyene Schiff bases. Implications for bacteriorhodopsin and rhodopsin.
    Gilson HS; Honig BH; Croteau A; Zarrilli G; Nakanishi K
    Biophys J; 1988 Feb; 53(2):261-9. PubMed ID: 3345334
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Resonance raman spectroscopy of an ultraviolet-sensitive insect rhodopsin.
    Pande C; Deng H; Rath P; Callender RH; Schwemer J
    Biochemistry; 1987 Nov; 26(23):7426-30. PubMed ID: 3427084
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A vibrational analysis of rhodopsin and bacteriorhodopsin chromophore analogues: resonance Raman and infrared spectroscopy of chemically modified retinals and Schiff bases.
    Cookingham RE; Lewis A; Lemley AT
    Biochemistry; 1978 Oct; 17(22):4699-711. PubMed ID: 728379
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photochemistry of rhodopsin and isorhodopsin investigated on a picosecond time scale.
    Monger TG; Alfano RR; Callender RH
    Biophys J; 1979 Jul; 27(1):105-15. PubMed ID: 262374
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spectroscopic evidence for altered chromophore--protein interactions in low-temperature photoproducts of the visual pigment responsible for congenital night blindness.
    Fahmy K; Zvyaga TA; Sakmar TP; Siebert F
    Biochemistry; 1996 Nov; 35(47):15065-73. PubMed ID: 8942673
    [TBL] [Abstract][Full Text] [Related]  

  • 28. FTIR spectroscopy reveals microscopic structural changes of the protein around the rhodopsin chromophore upon photoisomerization.
    Kandori H; Maeda A
    Biochemistry; 1995 Oct; 34(43):14220-9. PubMed ID: 7578021
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rhodopsin-lumirhodopsin phototransition of bovine rhodopsin investigated by Fourier transform infrared difference spectroscopy.
    Ganter UM; Gärtner W; Siebert F
    Biochemistry; 1988 Sep; 27(19):7480-8. PubMed ID: 3207686
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 13C magic-angle spinning NMR studies of bathorhodopsin, the primary photoproduct of rhodopsin.
    Smith SO; Courtin J; de Groot H; Gebhard R; Lugtenburg J
    Biochemistry; 1991 Jul; 30(30):7409-15. PubMed ID: 1649627
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The photoreaction of vacuum-dried rhodopsin at low temperature: evidence for charge stabilization by water.
    Ganter UM; Schmid ED; Siebert F
    J Photochem Photobiol B; 1988 Dec; 2(4):417-26. PubMed ID: 3149997
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A resonance Raman study of the C=C stretch modes in bovine and octopus visual pigments with isotopically labeled retinal chromophores.
    Huang L; Deng H; Koutalos Y; Ebrey T; Groesbeek M; Lugtenburg J; Tsuda M; Callender RH
    Photochem Photobiol; 1997 Dec; 66(6):747-54. PubMed ID: 9421961
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Resonance Raman analysis of the mechanism of energy storage and chromophore distortion in the primary visual photoproduct.
    Yan EC; Ganim Z; Kazmi MA; Chang BS; Sakmar TP; Mathies RA
    Biochemistry; 2004 Aug; 43(34):10867-76. PubMed ID: 15323547
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Complete assignment of the hydrogen out-of-plane wagging vibrations of bathorhodopsin: chromophore structure and energy storage in the primary photoproduct of vision.
    Palings I; van den Berg EM; Lugtenburg J; Mathies RA
    Biochemistry; 1989 Feb; 28(4):1498-507. PubMed ID: 2719913
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Resonance Raman examination of the wavelength regulation mechanism in human visual pigments.
    Kochendoerfer GG; Wang Z; Oprian DD; Mathies RA
    Biochemistry; 1997 Jun; 36(22):6577-87. PubMed ID: 9184137
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assigning the resonance Raman spectral features of rhodopsin, isorhodopsin and bathorhodopsin in bovine photostationary state spectra.
    Marcus MA; Lewis A
    Photochem Photobiol; 1979 Apr; 29(4):699-702. PubMed ID: 451010
    [No Abstract]   [Full Text] [Related]  

  • 37. Why are blue visual pigments blue? A resonance Raman microprobe study.
    Loppnow GR; Barry BA; Mathies RA
    Proc Natl Acad Sci U S A; 1989 Mar; 86(5):1515-8. PubMed ID: 2493645
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Time-resolved resonance Raman analysis of chromophore structural changes in the formation and decay of rhodopsin's BSI intermediate.
    Pan D; Ganim Z; Kim JE; Verhoeven MA; Lugtenburg J; Mathies RA
    J Am Chem Soc; 2002 May; 124(17):4857-64. PubMed ID: 11971736
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Water and peptide backbone structure in the active center of bovine rhodopsin.
    Nagata T; Terakita A; Kandori H; Kojima D; Shichida Y; Maeda A
    Biochemistry; 1997 May; 36(20):6164-70. PubMed ID: 9166788
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bathorhodopsin structure in the room-temperature rhodopsin photosequence: picosecond time-resolved coherent anti-Stokes Raman scattering.
    Popp A; Ujj L; Atkinson GH
    Proc Natl Acad Sci U S A; 1996 Jan; 93(1):372-6. PubMed ID: 8552641
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.