These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 7260259)

  • 41. Raman microscope and quantum yield studies on the primary photochemistry of A2-visual pigments.
    Barry B; Mathies RA; Pardoen JA; Lugtenburg J
    Biophys J; 1987 Oct; 52(4):603-10. PubMed ID: 3676440
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Energy uptake in the first step of visual excitation.
    Cooper A
    Nature; 1979 Nov; 282(5738):531-3. PubMed ID: 503236
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The photoreaction of vacuum-dried rhodopsin at low temperature: evidence for charge stabilization by water.
    Ganter UM; Schmid ED; Siebert F
    J Photochem Photobiol B; 1988 Dec; 2(4):417-26. PubMed ID: 3149997
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Primary intermediates of rhodopsin studied by low temperature spectrophotometry and laser photolysis. Bathorhodopsin, hypsorhodopsin and photorhodopsin.
    Yoshizawa T; Shichida Y; Matuoka S
    Vision Res; 1984; 24(11):1455-63. PubMed ID: 6398559
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Low-temperature circular dichroism of intermediates of rhodopsin.
    Yoshizawa T; Shichida Y
    Methods Enzymol; 1982; 81():634-41. PubMed ID: 7098903
    [No Abstract]   [Full Text] [Related]  

  • 46. Formation of 7-cis- and 13-cis-retinal pigments by irradiating squid rhodopsin.
    Maeda A; Shichida Y; Yoshizawa T
    Biochemistry; 1979 Apr; 18(8):1449-53. PubMed ID: 427126
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Molecular mechanisms of photoreception. IV. Photoregeneration of rhodopsin from metarhodopsin II using the artificial lipid membrane method for detection of intermediate steps of this reaction].
    Orlov NIa; Fesenko EE
    Mol Biol (Mosk); 1981; 15(6):1276-85. PubMed ID: 7322116
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rotational diffusion of rhodopsin-digitonin micelles studied by transient photodichroism.
    Strackee L
    Biophys J; 1971 Sep; 11(9):728-38. PubMed ID: 5132498
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Chromophore configuration of iodopsin and its photoproducts formed at low temperatures.
    Imamoto Y; Yoshizawa T; Shichida Y
    Biochemistry; 1996 Nov; 35(46):14599-607. PubMed ID: 8931558
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Picosecond absorption studies on rhodopsin and isorhodopsin in detergent and native membrane.
    Rudzki JE; Peters KS
    Biochemistry; 1984 Aug; 23(17):3843-8. PubMed ID: 6487580
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Water structural changes in lumirhodopsin, metarhodopsin I, and metarhodopsin II upon photolysis of bovine rhodopsin: analysis by Fourier transform infrared spectroscopy.
    Maeda A; Ohkita YJ; Sasaki J; Shichida Y; Yoshizawa T
    Biochemistry; 1993 Nov; 32(45):12033-8. PubMed ID: 8218280
    [TBL] [Abstract][Full Text] [Related]  

  • 52. 13-desmethyl rhodopsin and 13-desmethyl isorhodopsin: visual pigment analogues.
    Nelson R; deRiel JK; Kropf A
    Proc Natl Acad Sci U S A; 1970 Jun; 66(2):531-8. PubMed ID: 5271178
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Rhodopsin fluorescence in the retinal rods of the bull at -196 degrees C].
    Sineshchekov VA; Litvin FF
    Dokl Akad Nauk SSSR; 1985; 281(6):1471-4. PubMed ID: 4028929
    [No Abstract]   [Full Text] [Related]  

  • 54. Changes in structure of the chromophore in the photochemical process of bovine rhodopsin as revealed by FTIR spectroscopy for hydrogen out-of-plane vibrations.
    Ohkita YJ; Sasaki J; Maeda A; Yoshizawa T; Groesbeek M; Verdegem P; Lugtenburg J
    Biophys Chem; 1995; 56(1-2):71-8. PubMed ID: 7662871
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Coupled HOOP signature correlates with quantum yield of isorhodopsin and analog pigments.
    Bovee-Geurts PHM; Lugtenburg J; DeGrip WJ
    Biochim Biophys Acta Bioenerg; 2017 Feb; 1858(2):118-125. PubMed ID: 27836700
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structural changes in lumirhodopsin and metarhodopsin I studied by their photoreactions at 77 K.
    Furutani Y; Kandori H; Shichida Y
    Biochemistry; 2003 Jul; 42(28):8494-500. PubMed ID: 12859195
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Photosensitivity and quantum efficiency of photoisomerization in rhodopsin and retinal.
    Kropf A
    Methods Enzymol; 1982; 81():384-92. PubMed ID: 7098885
    [No Abstract]   [Full Text] [Related]  

  • 58. Photoregeneration of rhodopsin and isorhodopsin from metarhodopsin III in the frog retina.
    Reuter T
    Vision Res; 1976; 16(9):909-17. PubMed ID: 1085064
    [No Abstract]   [Full Text] [Related]  

  • 59. Rhodopsin regeneration is accelerated via noncovalent 11-cis retinal-opsin complex--a role of retinal binding pocket of opsin.
    Matsumoto H; Yoshizawa T
    Photochem Photobiol; 2008; 84(4):985-9. PubMed ID: 18399914
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A new approach to understanding the initial step in visual transduction.
    Milder SJ; Kliger DS
    Biophys J; 1986 Feb; 49(2):567-70. PubMed ID: 3955186
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.