These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 7260282)

  • 1. Interactions of voltage-sensing dyes with membranes. I. Steady-state permeability behaviors induced by cyanine dyes.
    Krasne S
    Biophys J; 1980 Jun; 30(3):415-39. PubMed ID: 7260282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions of voltage-sensing dyes with membranes. II. Spectrophotometric and electrical correlates of cyanine-dye adsorption to membranes.
    Krasne S
    Biophys J; 1980 Jun; 30(3):441-62. PubMed ID: 7260283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions of voltage-sensing dyes with membranes. III. Electrical properties induced by merocyanine 540.
    Krasne S
    Biophys J; 1983 Dec; 44(3):305-14. PubMed ID: 6661489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyanine dye structural and voltage-induced variations in photo-voltages of bilayer membranes.
    Huebner JS
    J Membr Biol; 1978 Mar; 39(2-3):97-132. PubMed ID: 641979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyanine and safranine dyes as membrane potential probes in cytochrome c oxidase reconstituted proteoliposomes.
    Singh AP; Nicholls P
    J Biochem Biophys Methods; 1985 Aug; 11(2-3):95-108. PubMed ID: 2993401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asymmetric electrostatic effects on the gating of rat brain sodium channels in planar lipid membranes.
    Cukierman S
    Biophys J; 1991 Oct; 60(4):845-55. PubMed ID: 1660316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photo-voltages of bilayer lipid membranes in the presence of cyanine dyes.
    Huebner JS
    Biochim Biophys Acta; 1975 Oct; 406(2):178-86. PubMed ID: 1191646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational models for monitoring the trans-membrane potential with fluorescent probes: the DiSC
    Alvarez-Bustamante JA; Lemeshko VV
    Eur Biophys J; 2016 Dec; 45(8):815-830. PubMed ID: 27067434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane potential, surface potential, and ionic permeabilities.
    Ohki S
    Physiol Chem Phys; 1981; 13(3):195-210. PubMed ID: 7301941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular aspects of electrical excitation in lipid bilayers and cell membranes.
    Mueller P
    Horiz Biochem Biophys; 1976; 2():230-84. PubMed ID: 776770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of fluorescent dyes to measure membrane potentials: a response.
    Smith TC
    J Cell Physiol; 1982 Aug; 112(2):302-5. PubMed ID: 6288745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The use of fluorescent dyes to measure membrane potentials: a critique.
    Johnstone RM; Laris PC; Eddy AA
    J Cell Physiol; 1982 Aug; 112(2):298-300. PubMed ID: 7119027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voltage-sensitive cyanine dye fluorescence signals in lymphocytes: plasma membrane and mitochondrial components.
    Wilson HA; Seligmann BE; Chused TM
    J Cell Physiol; 1985 Oct; 125(1):61-71. PubMed ID: 2413057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid and salt effects on carbocyanine dye-induced photo-voltages in bilayer membranes.
    Baker JA; Duchek JR; Hooper RL; Koftan RJ; Huebner JS
    Biochim Biophys Acta; 1979 May; 553(1):1-10. PubMed ID: 454581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of potential-dependent light absorption changes of lipid bilayer membranes in the presence of cyanine and oxonol dyes.
    Waggoner AS; Wang CH; Tolles RL
    J Membr Biol; 1977 May; 33(1-2):109-40. PubMed ID: 864684
    [No Abstract]   [Full Text] [Related]  

  • 16. Ionic permeability of K, Na, and Cl in potassium-depolarized nerve. Dependency on pH, cooperative effects, and action of tetrodotoxin.
    Strickholm A
    Biophys J; 1981 Sep; 35(3):677-97. PubMed ID: 7272457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modification of ion transport in lipid bilayer membranes in the presence of 2,4-dichlorophenoxyacetic acid. II. Suppression of tetraphenylborate conductance and changes of interfacial potentials.
    Smejtek P; Paulis-Illangasekare M
    Biophys J; 1979 Jun; 26(3):467-87. PubMed ID: 262428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Connexin37 forms high conductance gap junction channels with subconductance state activity and selective dye and ionic permeabilities.
    Veenstra RD; Wang HZ; Beyer EC; Ramanan SV; Brink PR
    Biophys J; 1994 Jun; 66(6):1915-28. PubMed ID: 7521227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipid surface charge does not influence conductance or calcium block of single sodium channels in planar bilayers.
    Worley JF; French RJ; Pailthorpe BA; Krueger BK
    Biophys J; 1992 May; 61(5):1353-63. PubMed ID: 1318097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of phospholipid surface charge on ion conduction in the K+ channel of sarcoplasmic reticulum.
    Bell JE; Miller C
    Biophys J; 1984 Jan; 45(1):279-87. PubMed ID: 6324908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.