These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. A cleft model for cardiac Purkinje strands. Levin DN; Fozzard HA Biophys J; 1981 Mar; 33(3):383-408. PubMed ID: 7225512 [TBL] [Abstract][Full Text] [Related]
4. Linear electrical properties of the transverse tubules and surface membrane of skeletal muscle fibers. Schneider MF J Gen Physiol; 1970 Nov; 56(5):640-71. PubMed ID: 5475999 [TBL] [Abstract][Full Text] [Related]
5. The effects of Na-Ca exchange on membrane currents in sheep cardiac Purkinje fibers. Lederer WJ; Sheu SS; Vaughan-Jones RD; Eisner DA Soc Gen Physiol Ser; 1984; 38():373-80. PubMed ID: 6695211 [No Abstract] [Full Text] [Related]
6. Linear electrical properties of passive and active currents in spherical heart cell clusters. Mathias RT; Ebihara L; Lieberman M; Johnson EA Biophys J; 1981 Oct; 36(1):221-42. PubMed ID: 7284551 [TBL] [Abstract][Full Text] [Related]
7. Effects of the propagation velocity of a surface depolarization wave on the extracellular potential of an excitable cell. Bardakjian BL; Vigmond EJ IEEE Trans Biomed Eng; 1994 May; 41(5):432-9. PubMed ID: 8070802 [TBL] [Abstract][Full Text] [Related]
8. Electrical properties of the myotendon region of frog twitch muscle fibers measured in the frequency domain. Milton RL; Mathias RT; Eisenberg RS Biophys J; 1985 Aug; 48(2):253-67. PubMed ID: 3876852 [TBL] [Abstract][Full Text] [Related]
10. [Analysis of the equations of excitable membranes. IV. Use of the null-isocline method for analysis of Purkinje fiber membranes (anode and cathode stimulation, extrasystoles)]. Kokoz IuM; Krinskiĭ VI; Mornev OA Biofizika; 1974; 19(3):493-8. PubMed ID: 4138592 [No Abstract] [Full Text] [Related]
11. Transverse impedance of single frog skeletal muscle fibers. Mobley BA; Eidt G Biophys J; 1982 Oct; 40(1):51-9. PubMed ID: 6982732 [TBL] [Abstract][Full Text] [Related]
13. The resting membrane parameters of human intercostal muscle at low, normal, and high extracellular potassium. Kwieciński H; Lehmann-Horn F; Rüdel R Muscle Nerve; 1984 Jan; 7(1):60-5. PubMed ID: 6700631 [TBL] [Abstract][Full Text] [Related]
15. Fluctuations in membrane current driven by intracellular calcium in cardiac Purkinje fibers. Kass RS; Tsien RW Biophys J; 1982 Jun; 38(3):259-69. PubMed ID: 6809065 [TBL] [Abstract][Full Text] [Related]
16. The electrical resistivity of cytoplasm. Foster KR; Bidinger JM; Carpenter DO Biophys J; 1976 Sep; 16(9):991-1001. PubMed ID: 963211 [TBL] [Abstract][Full Text] [Related]
17. Mapping electric currents around skeletal muscle with a vibrating probe. Betz WJ; Caldwell JH J Gen Physiol; 1984 Feb; 83(2):143-56. PubMed ID: 6716088 [TBL] [Abstract][Full Text] [Related]
18. A novel approach for precise simulation of the EMG signal detected by surface electrodes. Farina D; Merletti R IEEE Trans Biomed Eng; 2001 Jun; 48(6):637-46. PubMed ID: 11396594 [TBL] [Abstract][Full Text] [Related]
19. Ionic mechanisms of pacemaker activity in cardiac Purkinje fibers. Tsien RW; Carpenter DO Fed Proc; 1978 Jun; 37(8):2127-31. PubMed ID: 350631 [TBL] [Abstract][Full Text] [Related]
20. The response of a spherical heart to a uniform electric field: a bidomain analysis of cardiac stimulation. Trayanova NA; Roth BJ; Malden LJ IEEE Trans Biomed Eng; 1993 Sep; 40(9):899-908. PubMed ID: 8288281 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]