BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 7260329)

  • 1. Fluorescence anisotropy decay of ethidium bound to chromatin.
    Genest D; Sabeur G; Wahl P; Auchet JC
    Biophys Chem; 1981 Feb; 13(1):77-87. PubMed ID: 7260329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Location of the ethidium binding sites of high affinity in chromatin.
    Genest D; Sabeur G; Wahl P; Aubel-Sadron G
    Biophys Chem; 1981 Feb; 13(1):89-96. PubMed ID: 7260330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Internal motion of deoxyribonucleic acid in chromatin. Nanosecond fluorescence studies of intercalated ethidium.
    Ashikawa I; Kinosita K; Ikegami A; Nishimura Y; Tsuboi M; Watanabe K; Iso K; Nakano T
    Biochemistry; 1983 Dec; 22(25):6018-26. PubMed ID: 6661423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence anisotropy decay of ethidium bromide bound to nucleosomal core particles.
    Genest D; Wahl P; Erard M; Champagne M; Daune M
    Biochimie; 1982 Jun; 64(6):419-27. PubMed ID: 7115784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The effect of ethidium bromide on the stability of the DNA helix in normal and tumor cells].
    Zhizhina GP
    Dokl Akad Nauk SSSR; 1986; 290(4):999-1002. PubMed ID: 3780391
    [No Abstract]   [Full Text] [Related]  

  • 6. Fluorescence anisotropy decay due to rotational brownian motion of ethidium intercalated in double strand DNA.
    Genest D; Wahl P
    Biochim Biophys Acta; 1978 Dec; 521(2):502-9. PubMed ID: 570059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The fluorescence anisotropy decay due to energy transfers occuring in the ethidium bromide-DNA complex. Determination of the deformation angle of the DNA helix.
    Genest D; Wahl P; Auchet JC
    Biophys Chem; 1974 Apr; 1(4):266-78. PubMed ID: 4472369
    [No Abstract]   [Full Text] [Related]  

  • 8. Unfolding of nucleosomes by ethidium binding.
    Wu HM; Dattagupta N; Hogan M; Crothers DM
    Biochemistry; 1980 Feb; 19(4):626-34. PubMed ID: 7356952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of fluorescence anisotropy decay of poly d(A-T) ethidium bromide complex to estimate the unwinding angle of the double helix.
    Tichadou JL; Genest D; Wahl P; Aubel-Sabron G
    Biophys Chem; 1975 Apr; 3(2):142-6. PubMed ID: 1148369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relaxation of chromatin structure induced by ethidium binding. Involvement of the intercalation process.
    Paoletti J
    Eur J Biochem; 1979 Oct; 100(2):531-9. PubMed ID: 510297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased stability of the higher order structure of chicken erythrocyte chromatin: nanosecond anisotropy studies of intercalated ethidium.
    Ashikawa I; Kinosita K; Ikegami A; Nishimura Y; Tsuboi M
    Biochemistry; 1985 Mar; 24(6):1291-7. PubMed ID: 3986177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal denaturation of the DNA-ethidium complex. Redistribution of the intercalated dye during melting.
    Aktipis S; Martz WW; Kindelis A
    Biochemistry; 1975 Jan; 14(2):326-31. PubMed ID: 1168063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Circular dichroism studies of ethidium bromide binding to the isolated nucleolus.
    Huang CH; Baserga R
    Nucleic Acids Res; 1976 Aug; 3(8):1857-73. PubMed ID: 967680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on chromatin. V. A model for the structure of chromatin subunit.
    Varshavsky AJ; Georgiev GP
    Mol Biol Rep; 1975 Oct; 2(3):255-62. PubMed ID: 1196313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence emission of ethidium bromide intercalated in defined DNA duplexes: evaluation of hydrodynamics components.
    Duhamel J; Kanyo J; Dinter-Gottlieb G; Lu P
    Biochemistry; 1996 Dec; 35(51):16687-97. PubMed ID: 8988005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relaxation of chromatin structure induced by ethidium binding: 1--Micrococcal nuclease digestion of the ethidium--chromatin complex.
    Paoletti J
    Biochem Biophys Res Commun; 1978 Mar; 81(1):193-8. PubMed ID: 656095
    [No Abstract]   [Full Text] [Related]  

  • 17. Investigation of DNA dynamics and drug-DNA interaction by steady state fluorescence anisotropy.
    Genest D; Mirau PA; Kearns DR
    Nucleic Acids Res; 1985 Apr; 13(7):2603-15. PubMed ID: 4000964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of DNA in chromatin and DNA binding mode to core protein.
    Ashikawa I; Kinosita K; Ikegami A; Nishimura Y; Tsuboi M; Watanabe K; Iso K
    J Biochem; 1983 Feb; 93(2):665-8. PubMed ID: 6841363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterogeneity of chromatin subunits in vitro and location of histone H1.
    Varshavsky AJ; Bakayev VV; Georgiev GP
    Nucleic Acids Res; 1976 Feb; 3(2):477-92. PubMed ID: 1257057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ethidium bromide binding to core particle: comparison with native chromatin.
    Erard M; Das GC; de Murcia G; Mazen A; Pouyet J; Champagne M; Daune M
    Nucleic Acids Res; 1979 Jul; 6(10):3231-53. PubMed ID: 482127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.