These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 7261570)

  • 101. Limitations of 133 Xe washout technique in estimation of renal blood flow.
    Mowat P; Lupu AN; Maxwell MH
    Am J Physiol; 1972 Sep; 223(3):682-8. PubMed ID: 5055326
    [No Abstract]   [Full Text] [Related]  

  • 102. Dynamic simulation of the renal medulla.
    Barrett GL; Packer JS
    Med Biol Eng Comput; 1983 May; 21(3):324-32. PubMed ID: 6876908
    [No Abstract]   [Full Text] [Related]  

  • 103. A digital computer model of countercurrent system of renal medulla.
    Takasugi S; Furukawa T; Kajiya F; Inoue M; Inada H
    Med J Osaka Univ; 1973 Mar; 23(4):257-66. PubMed ID: 4766284
    [No Abstract]   [Full Text] [Related]  

  • 104. Countercurrent transport in the kidney.
    Stephenson JL
    Annu Rev Biophys Bioeng; 1978; 7():315-39. PubMed ID: 352242
    [No Abstract]   [Full Text] [Related]  

  • 105. [The influence of the renin-angiotensin system on autoregulation of renal blood flow and intrarenal hemodynamics (author's transl)].
    Brech WJ
    Klin Wochenschr; 1976 Mar; 54(6):245-54. PubMed ID: 772295
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Models of the urinary concentrating mechanism.
    Stephenson JL
    Kidney Int; 1987 Feb; 31(2):648-61. PubMed ID: 3550236
    [No Abstract]   [Full Text] [Related]  

  • 107. Physiology of renal hypoxia.
    Epstein FH; Agmon Y; Brezis M
    Ann N Y Acad Sci; 1994 Apr; 718():72-81; discussion 81-2. PubMed ID: 8185253
    [No Abstract]   [Full Text] [Related]  

  • 108. Influence of the renal medullary circulation on the control of sodium excretion.
    Roman RJ; Zou AP
    Am J Physiol; 1993 Nov; 265(5 Pt 2):R963-73. PubMed ID: 8238625
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Questions and replies: renal mechanisms for urinary concentrating and diluting processes.
    Am J Physiol; 1978 Jul; 235(1):F1-11. PubMed ID: 354413
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Role of the renal medulla in volume and arterial pressure regulation.
    Cowley AW
    Am J Physiol; 1997 Jul; 273(1 Pt 2):R1-15. PubMed ID: 9249526
    [TBL] [Abstract][Full Text] [Related]  

  • 111. How is urine concentrated by the renal inner medulla?
    Knepper MA; Chou CL; Layton HE
    Contrib Nephrol; 1993; 102():144-60. PubMed ID: 8416179
    [No Abstract]   [Full Text] [Related]  

  • 112. [Diuretics and renal hemodynamics].
    Honda N; Suzuki K
    Nihon Rinsho; 1974 Aug; 32(8):2595-600. PubMed ID: 4612206
    [No Abstract]   [Full Text] [Related]  

  • 113. Renal oxygen delivery: matching delivery to metabolic demand.
    O'Connor PM
    Clin Exp Pharmacol Physiol; 2006 Oct; 33(10):961-7. PubMed ID: 17002675
    [TBL] [Abstract][Full Text] [Related]  

  • 114. The renal antihypertensive hormone.
    Muirhead EE; Pitcock JA
    J Hypertens; 1985 Feb; 3(1):1-8. PubMed ID: 3889145
    [No Abstract]   [Full Text] [Related]  

  • 115. A control system model of renal blood flow regulation.
    Cage PE; Carson ER; Britton KE
    Comput Biomed Res; 1981 Aug; 14(4):304-13. PubMed ID: 7261570
    [No Abstract]   [Full Text] [Related]  

    [Previous]     [New Search]
    of 6.