BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 7262078)

  • 1. Interference of nucleoside diphosphates and inorganic phosphate with nucleoside-triphosphate-dependent calcium fluxes and calcium-dependent nucleoside-triphosphate hydrolysis in membranes of sarcoplasmic-reticulum vesicles.
    Waas W; Hasselbach W
    Eur J Biochem; 1981 Jun; 116(3):601-8. PubMed ID: 7262078
    [No Abstract]   [Full Text] [Related]  

  • 2. Comparison between ATP-supported and GTP-supported phosphate turnover of the calcium-transporting sarcoplasmic reticulum membranes.
    Ronzani N; Migala A; Hasselbach W
    Eur J Biochem; 1979 Nov; 101(2):593-606. PubMed ID: 160316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the Ca2+ concentration gradient in the adenosine 5'-triphosphate-inorganic phosphate exchange catalyzed by sarcoplasmic reticulum.
    de Meis L; Costa Carvalho Mda G
    Biochemistry; 1974 Nov; 13(24):5032-8. PubMed ID: 4433536
    [No Abstract]   [Full Text] [Related]  

  • 4. The inhibition by beta-adrenoceptor blocking agents of calcium uptake into and efflux from isolated sarcoplasmic vesicles.
    Temple DM; Hasselbach W; Makinose M
    Naunyn Schmiedebergs Arch Pharmacol; 1974; 282(2):187-94. PubMed ID: 4153127
    [No Abstract]   [Full Text] [Related]  

  • 5. Nucleotide triphosphate utilization by cardiac and skeletal muscle sarcoplasmic reticulum. Evidence for a hydrolysis cycle not coupled to intermediate acyl phosphate formation and calcium translocation.
    Van Winkle WB; Tate CA; Bick RJ; Entman ML
    J Biol Chem; 1981 Mar; 256(5):2268-74. PubMed ID: 6450765
    [No Abstract]   [Full Text] [Related]  

  • 6. Adenosine 5'-triphosphate dependent fluxes of manganese and and hydrogen ions in sarcoplasmic reticulum vesicles.
    Chiesi M; Inesi G
    Biochemistry; 1980 Jun; 19(13):2912-8. PubMed ID: 7190437
    [No Abstract]   [Full Text] [Related]  

  • 7. [Ability of nucleoside triphosphates to provide for Ca 2+ transport by sarcoplasmic reticulum fragments].
    Lushchak VI
    Ukr Biokhim Zh (1978); 1990; 62(2):64-9. PubMed ID: 2142350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ADP-activated calcium ion exchange in sarcoplasmic reticulum vesicles.
    Beirăo PS; De Meis L
    Biochim Biophys Acta; 1976 May; 433(3):520-30. PubMed ID: 819033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of ATP/ADP/phosphate potential on the maximal steady-state uptake of Ca2+ by skeletal sarcoplasmic reticulum.
    Dixon D; Corbett A; Haynes DH
    J Bioenerg Biomembr; 1982 Apr; 14(2):87-96. PubMed ID: 6124541
    [No Abstract]   [Full Text] [Related]  

  • 10. Regulation of steady state level of phosphoenzyme and ATP synthesis in sarcoplasmic reticulum vesicles during reversal of the Ca2+ pump.
    de Meis L
    J Biol Chem; 1976 Apr; 251(7):2055-62. PubMed ID: 5437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium gradient dependent pyrophosphate formation by sarcoplasmic vesicles.
    Hasselbach W; Migala A
    Z Naturforsch C Biosci; 1977; 32(11-12):992-6. PubMed ID: 203132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of acylphosphates on Ca2+ uptake by sarcoplasmic reticulum vesicles.
    Liguri G; Stefani M; Berti A; Nassi P; Ramponi G
    Arch Biochem Biophys; 1980 Apr; 200(2):357-63. PubMed ID: 7436409
    [No Abstract]   [Full Text] [Related]  

  • 13. Reaction mechanism of Ca2+-dependent ATP hydrolysis by skeletal muscle sarcoplasmic reticulum in the absence of added alkali metal salts. III. Sequential occurrence of ADP-sensitive and ADP-insensitive phosphoenzymes.
    Shigekawa M; Dougherty JP
    J Biol Chem; 1978 Mar; 253(5):1458-64. PubMed ID: 146712
    [No Abstract]   [Full Text] [Related]  

  • 14. Substrate regulation of membrane phosphorylation and of Ca 2+ transport in the sarcoplasmic reticulum.
    de Meis L; Fialho de Mello MC
    J Biol Chem; 1973 May; 248(10):3691-701. PubMed ID: 4267300
    [No Abstract]   [Full Text] [Related]  

  • 15. Phosphorylation of the calcium-transport adenosine triphosphate of cardiac sarcoplasmic reticulum by orthophosphate.
    Winkler F; Suko J
    Eur J Biochem; 1977 Aug; 77(3):611-9. PubMed ID: 19259
    [No Abstract]   [Full Text] [Related]  

  • 16. Synthesis of ATP coupled to Ca 2+ release from sarcoplasmic reticulum vesicles.
    Panet R; Selinger Z
    Biochim Biophys Acta; 1972 Jan; 255(1):34-42. PubMed ID: 5011002
    [No Abstract]   [Full Text] [Related]  

  • 17. [Calcium release from vesicles of heavy sarcoplasmic reticulum of rabbit skeletal muscles].
    Smirnova MB; Rubtsov AM; Boldyrev AA
    Ukr Biokhim Zh (1978); 1989; 61(1):57-64. PubMed ID: 2472698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of ADP, phosphate and arsenate on Ca efflux from sarcoplasmic reticulum vesicles.
    Pick U; Bassilian S
    Eur J Biochem; 1983 Mar; 131(2):393-9. PubMed ID: 6832158
    [No Abstract]   [Full Text] [Related]  

  • 19. Phosphate and thiophosphate group donating adenine and guanine nucleotides inhibit glibenclamide binding to membranes from pancreatic islets.
    Schwanstecher M; Löser S; Rietze I; Panten U
    Naunyn Schmiedebergs Arch Pharmacol; 1991 Jan; 343(1):83-9. PubMed ID: 1903188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation of the sarcoplasmic reticulum membrane by orthophosphate. Inhibition by calcium ions.
    Masuda H; de Meis L
    Biochemistry; 1973 Nov; 12(23):4581-5. PubMed ID: 4773845
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.