These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 7262434)

  • 1. Na+-independent sugar uptake by rat intestinal and renal brush border and basolateral membrane vesicles.
    Ling KY; Im WB; Faust RG
    Int J Biochem; 1981; 13(6):693-700. PubMed ID: 7262434
    [No Abstract]   [Full Text] [Related]  

  • 2. Decreased monosaccharide transport in renal brush-border membrane vesicles of spontaneously hypertensive rats.
    Mate A; de la Hermosa MA; Barfull A; Sánchez-Aguayo I; Planas JM; Vázquez CM
    Cell Mol Life Sci; 2000 Jan; 57(1):165-74. PubMed ID: 10949588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sugar transport by renal plasma membrane vesicles. Characterization of the systems in the brush-border microvilli and basal-lateral plasma membranes.
    Kinne R; Murer H; Kinne-Saffran E; Thees M; Sachs G
    J Membr Biol; 1975; 21(3-4):375-95. PubMed ID: 1127684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Psychological stress impairs Na+-dependent glucose absorption and increases GLUT2 expression in the rat jejunal brush-border membrane.
    Boudry G; Cheeseman CI; Perdue MH
    Am J Physiol Regul Integr Comp Physiol; 2007 Feb; 292(2):R862-7. PubMed ID: 17053095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A high yield preparation of brush border membrane vesicles from organ-cultured embryonic chick jejunum: demonstration of insulin sensitivity of Na(+)-dependent D-glucose transport.
    Debiec H; Cross HS; Peterlik M
    J Nutr; 1991 Jan; 121(1):105-13. PubMed ID: 1992047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insulin induced hypoglycaemia and sugar transport across the brush border and basolateral membranes of rat jejunal enterocytes.
    Debnam ES; Chowrimootoo G
    Eur J Clin Invest; 1993 Aug; 23(8):480-5. PubMed ID: 8405000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of hyperglycemia on D-glucose transport across the brush-border and basolateral membrane of rat small intestine.
    Maenz DD; Cheeseman CI
    Biochim Biophys Acta; 1986 Aug; 860(2):277-85. PubMed ID: 3741853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotin uptake mechanisms in brush-border and basolateral membrane vesicles isolated from rabbit kidney cortex.
    Podevin RA; Barbarat B
    Biochim Biophys Acta; 1986 Apr; 856(3):471-81. PubMed ID: 3964692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acute and chronic effects of pancreatic glucagon on sugar transport across the brush-border and basolateral membranes of rat jejunal enterocytes.
    Debnam ES; Sharp PA
    Exp Physiol; 1993 Mar; 78(2):197-207. PubMed ID: 8471240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenolphthalein- and harmaline-induced disturbances in the transport functions of isolated brush border and basolateral membrane vesicles from rat jejunum and kidney cortex.
    Im WB; Misch DW; Powell DW; Faust RG
    Biochem Pharmacol; 1980 Sep; 29(17):2307-17. PubMed ID: 7426036
    [No Abstract]   [Full Text] [Related]  

  • 11. Sugar transport by brush border membrane vesicles isolated from human small intestine.
    Lúcke H; Berner W; Menge H; Murer H
    Pflugers Arch; 1978 Mar; 373(3):243-8. PubMed ID: 567321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The regulation of GLUT5 and GLUT2 activity in the adaptation of intestinal brush-border fructose transport in diabetes.
    Corpe CP; Basaleh MM; Affleck J; Gould G; Jess TJ; Kellett GL
    Pflugers Arch; 1996 Jun; 432(2):192-201. PubMed ID: 8662294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of L-malate transport in rat renal basolateral membrane vesicles.
    Kahn AM; Branham S; Weinman EJ
    Am J Physiol; 1984 Jun; 246(6 Pt 2):F779-84. PubMed ID: 6742128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid stimulatory effect of bradykinin on glucose transport across the brush-border and basolateral membranes of rat jejunal enterocytes.
    Sharp PA; Debnam ES
    Exp Physiol; 1992 Nov; 77(6):913-6. PubMed ID: 1489546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in neutral amino acid and glucose transport between brush border and basolateral plasma membrane of intestinal epithelial cells.
    Hopfer U; Sigrist-Nelson K; Ammann E; Murer H
    J Cell Physiol; 1976 Dec; 89(4):805-10. PubMed ID: 137908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of phosphate transport adaptation in rat intestinal and renal brush border membranes.
    Danisi G; Caverzasio J; Bonjour JP; Murer H; Straub RW
    Adv Exp Med Biol; 1986; 208():223-6. PubMed ID: 3565149
    [No Abstract]   [Full Text] [Related]  

  • 17. Stimulation of fructose transport across the intestinal brush-border membrane by PMA is mediated by GLUT2 and dynamically regulated by protein kinase C.
    Helliwell PA; Richardson M; Affleck J; Kellett GL
    Biochem J; 2000 Aug; 350 Pt 1(Pt 1):149-54. PubMed ID: 10926838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A D-mannose transport system in renal brush-border membranes.
    Mendelssohn DC; Silverman M
    Am J Physiol; 1989 Dec; 257(6 Pt 2):F1100-7. PubMed ID: 2603956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Na+-independent, phloretin-sensitive monosaccharide transport system in isolated intestinal epithelial cells.
    Kimmich GA; Randles J
    J Membr Biol; 1975 Aug; 23(1):57-76. PubMed ID: 1165580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Partial purification of the Na+-dependent D-glucose transport system from renal brush border membranes.
    Im WB; Ling KY; Faust RG
    J Membr Biol; 1982; 65(1-2):131-7. PubMed ID: 7057458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.