These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 7263427)

  • 1. Protein synthesis rates in atrophied gastrocnemius muscles after limb immobilization.
    Tucker KR; Seider MJ; Booth FW
    J Appl Physiol Respir Environ Exerc Physiol; 1981 Jul; 51(1):73-7. PubMed ID: 7263427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regrowth of atrophied skeletal muscle in adult rats after ending immobilization.
    Booth FW
    J Appl Physiol Respir Environ Exerc Physiol; 1978 Feb; 44(2):225-30. PubMed ID: 632162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Actin synthesis rate and mRNA level increase during early recovery of atrophied muscle.
    Morrison PR; Muller GW; Booth FW
    Am J Physiol; 1987 Aug; 253(2 Pt 1):C205-9. PubMed ID: 3618760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hindlimb casting decreases muscle mass in part by proteasome-dependent proteolysis but independent of protein synthesis.
    Krawiec BJ; Frost RA; Vary TC; Jefferson LS; Lang CH
    Am J Physiol Endocrinol Metab; 2005 Dec; 289(6):E969-80. PubMed ID: 16046454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early change in skeletal muscle protein synthesis after limb immobilization of rats.
    Booth FW; Seider MJ
    J Appl Physiol Respir Environ Exerc Physiol; 1979 Nov; 47(5):974-7. PubMed ID: 511723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in actin synthesis and alpha-actin-mRNA content in rat muscle during immobilization.
    Watson PA; Stein JP; Booth FW
    Am J Physiol; 1984 Jul; 247(1 Pt 1):C39-44. PubMed ID: 6742182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The ubiquitin-proteasome and the mitochondria-associated apoptotic pathways are sequentially downregulated during recovery after immobilization-induced muscle atrophy.
    Vazeille E; Codran A; Claustre A; Averous J; Listrat A; Béchet D; Taillandier D; Dardevet D; Attaix D; Combaret L
    Am J Physiol Endocrinol Metab; 2008 Nov; 295(5):E1181-90. PubMed ID: 18812460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different frequency treadmill running in immobilization-induced muscle atrophy and ankle joint contracture of rats.
    Sakakima H; Yoshida Y; Sakae K; Morimoto N
    Scand J Med Sci Sports; 2004 Jun; 14(3):186-92. PubMed ID: 15144359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscle atrophy by limb immobilization is not caused by insulin resistance.
    Butler DT; Booth FW
    Horm Metab Res; 1984 Apr; 16(4):172-4. PubMed ID: 6373543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Levels of blood-bourne factors and cytosol glucocorticoid receptors during the initiation of muscle atrophy in rodent hindlimbs.
    Nicholson WF; Watson PA; Booth FW
    Pflugers Arch; 1984 Aug; 401(4):321-3. PubMed ID: 6384924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of early low-intensity exercise on rat hind-limb muscles following acute ischemic stroke.
    Choe MA; An GJ; Lee YK; Im JH; Choi-Kwon S; Heitkemper M
    Biol Res Nurs; 2006 Jan; 7(3):163-74. PubMed ID: 16552944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Running during recovery from hindlimb suspension induces transient muscle injury.
    Kasper CE; White TP; Maxwell LC
    J Appl Physiol (1985); 1990 Feb; 68(2):533-9. PubMed ID: 2318764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of limb immobilization on skeletal muscle.
    Booth FW
    J Appl Physiol Respir Environ Exerc Physiol; 1982 May; 52(5):1113-8. PubMed ID: 7047468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the position of immobilization upon the tensile properties of the rat gastrocnemius muscle.
    Järvinen MJ; Einola SA; Virtanen EO
    Arch Phys Med Rehabil; 1992 Mar; 73(3):253-7. PubMed ID: 1543429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytochrome c protein-synthesis rates and mRNA contents during atrophy and recovery in skeletal muscle.
    Morrison PR; Montgomery JA; Wong TS; Booth FW
    Biochem J; 1987 Jan; 241(1):257-63. PubMed ID: 3032156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of iron in oxidative stress in skeletal muscle atrophied by immobilization.
    Kondo H; Miura M; Kodama J; Ahmed SM; Itokawa Y
    Pflugers Arch; 1992 Jun; 421(2-3):295-7. PubMed ID: 1528723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resistance exercise and growth hormone as countermeasures for skeletal muscle atrophy in hindlimb-suspended rats.
    Linderman JK; Gosselink KL; Booth FW; Mukku VR; Grindeland RE
    Am J Physiol; 1994 Aug; 267(2 Pt 2):R365-71. PubMed ID: 8067444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chronic α-hydroxyisocaproic acid treatment improves muscle recovery after immobilization-induced atrophy.
    Lang CH; Pruznak A; Navaratnarajah M; Rankine KA; Deiter G; Magne H; Offord EA; Breuillé D
    Am J Physiol Endocrinol Metab; 2013 Aug; 305(3):E416-28. PubMed ID: 23757407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of rat suspension-hypokinesia on the gastrocnemius muscle.
    Templeton GH; Padalino M; Manton J; LeConey T; Hagler H; Glasberg M
    Aviat Space Environ Med; 1984 May; 55(5):381-6. PubMed ID: 6233962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-Course of Muscle Mass Loss, Damage, and Proteolysis in Gastrocnemius following Unloading and Reloading: Implications in Chronic Diseases.
    Chacon-Cabrera A; Lund-Palau H; Gea J; Barreiro E
    PLoS One; 2016; 11(10):e0164951. PubMed ID: 27792730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.