These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 7263610)

  • 1. Assimilatory sulfur metabolism in marine microorganisms: characteristics and regulation of sulfate transport in Pseudomonas halodurans and Alteromonas luteo-violaceus.
    Cuhel RL; Taylor CD; Jannasch HW
    J Bacteriol; 1981 Aug; 147(2):340-9. PubMed ID: 7263610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assimilatory sulfur metabolism in marine microorganisms: a novel sulfate transport system in Alteromonas luteo-violaceus.
    Cuhel RL; Taylor CD; Jannasch HW
    J Bacteriol; 1981 Aug; 147(2):350-3. PubMed ID: 7263611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assimilatory Sulfur Metabolism in Marine Microorganisms: Sulfur Metabolism, Protein Synthesis, and Growth of Alteromonas luteo-violaceus and Pseudomonas halodurans During Perturbed Batch Growth.
    Cuhel RL; Taylor CD; Jannasch HW
    Appl Environ Microbiol; 1982 Jan; 43(1):151-9. PubMed ID: 16345918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissimilatory reduction of inorganic sulfur by facultatively anaerobic marine bacteria.
    Tuttle JH; Jannasch HW
    J Bacteriol; 1973 Sep; 115(3):732-7. PubMed ID: 4728269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Complete Pathway for Thiosulfate Utilization in Saccharomyces cerevisiae.
    Chen Z; Zhang X; Li H; Liu H; Xia Y; Xun L
    Appl Environ Microbiol; 2018 Nov; 84(22):. PubMed ID: 30217845
    [No Abstract]   [Full Text] [Related]  

  • 6. Determination of Total Sulfur, Sulfate, Sulfite, Thiosulfate, and Sulfolipids in Plants.
    Kurmanbayeva A; Brychkova G; Bekturova A; Khozin I; Standing D; Yarmolinsky D; Sagi M
    Methods Mol Biol; 2017; 1631():253-271. PubMed ID: 28735402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of arylsulfatase synthesis by sulfur compounds in Klebsiella aerogenes.
    Adachi T; Murooka Y; Harada T
    J Bacteriol; 1975 Jan; 121(1):29-35. PubMed ID: 1116990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nutritional studies with Pseudomonas aeruginosa grown on inorganic sulfur sources.
    Schook LB; Berk RS
    J Bacteriol; 1978 Mar; 133(3):1378-82. PubMed ID: 417066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assimilatory sulfur metabolism in marine microorganisms: considerations for the application of sulfate incorporation into protein as a measurement of natural population protein synthesis.
    Cuhel RL; Taylor CD; Jannasch HW
    Appl Environ Microbiol; 1982 Jan; 43(1):160-8. PubMed ID: 16345919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfate reduction is increased in transgenic Arabidopsis thaliana expressing 5'-adenylylsulfate reductase from Pseudomonas aeruginosa.
    Tsakraklides G; Martin M; Chalam R; Tarczynski MC; Schmidt A; Leustek T
    Plant J; 2002 Dec; 32(6):879-89. PubMed ID: 12492831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A sulfate, sulfite and thiosulfate incorporating system in Candida utilis.
    Alonso A; Benítez J; Díaz MA
    Folia Microbiol (Praha); 1984; 29(1):8-13. PubMed ID: 6538867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cysteine biosynthesis in Neisseria species.
    Hicks JL; Mullholland CV
    Microbiology (Reading); 2018 Dec; 164(12):1471-1480. PubMed ID: 30307392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The glutathione dependence of inorganic sulfate formation from L- or D-cysteine in isolated rat hepatocytes.
    Huang J; Khan S; O'Brien PJ
    Chem Biol Interact; 1998 Apr; 110(3):189-202. PubMed ID: 9609386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specificity and control of choline-O-sulfate transport in filamentous fungi.
    Bellenger N; Nissen P; Wood TC; Segel IH
    J Bacteriol; 1968 Nov; 96(5):1574-85. PubMed ID: 5726299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in the binding of sulfate, selenate and thiosulfate ions to bovine liver rhodanese, and a description of a binding site for ammonium and sodium ions. An X-ray diffraction study.
    Lijk LJ; Torfs CA; Kalk KH; De Maeyer MC; Hol WG
    Eur J Biochem; 1984 Jul; 142(2):399-408. PubMed ID: 6589161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Sulfate reduction and biosynthesis of sulfur containing amino acids (author's transl)].
    Naiki N; Yamagata S
    Seikagaku; 1974 Mar; 46(3):103-23. PubMed ID: 4367617
    [No Abstract]   [Full Text] [Related]  

  • 17. Assimilatory reduction of sulfate and sulfite by methanogenic bacteria.
    Daniels L; Belay N; Rajagopal BS
    Appl Environ Microbiol; 1986 Apr; 51(4):703-9. PubMed ID: 3707121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Derivatives of cysteine related to the thiosulfate metabolism of sulfur bacteria by the multi-enzyme complex "Sox"-studied by B3LYP-PCM and G3X(MP2) calculations.
    Steudel R; Steudel Y
    Phys Chem Chem Phys; 2010 Jan; 12(3):630-44. PubMed ID: 20066349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Oxidation of inorganic sulfur compounds by obligatory organotrophic bacteria].
    Sorokin DIu
    Mikrobiologiia; 2003; 72(6):725-39. PubMed ID: 14768537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved fermentative L-cysteine overproduction by enhancing a newly identified thiosulfate assimilation pathway in Escherichia coli.
    Kawano Y; Onishi F; Shiroyama M; Miura M; Tanaka N; Oshiro S; Nonaka G; Nakanishi T; Ohtsu I
    Appl Microbiol Biotechnol; 2017 Sep; 101(18):6879-6889. PubMed ID: 28756590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.