These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 7263610)
21. Sulfur metabolism in Thiorhodaceae. IV. Assimilatory reduction of sulfate by Thiocapsa floridana and Chromatium species. Thiele HH Antonie Van Leeuwenhoek; 1968; 34(3):341-9. PubMed ID: 5305787 [No Abstract] [Full Text] [Related]
22. Isotope effects associated with the anaerobic oxidation of sulfite and thiosulfate by the photosynthetic bacterium, Chromatium vinosum. Fry B; Gest H; Hayes JM FEMS Microbiol Lett; 1985; 27():227-32. PubMed ID: 11540842 [TBL] [Abstract][Full Text] [Related]
23. Regulation of sulfur nutrition in wild-type and transgenic poplar over-expressing gamma-glutamylcysteine synthetase in the cytosol as affected by atmospheric H2S. Herschbach C; van Der Zalm E; Schneider A; Jouanin L; De Kok LJ; Rennenberg H Plant Physiol; 2000 Sep; 124(1):461-73. PubMed ID: 10982459 [TBL] [Abstract][Full Text] [Related]
24. Regulation of the sulfate starvation response in Pseudomonas aeruginosa: role of cysteine biosynthetic intermediates. Hummerjohann J; Küttel E; Quadroni M; Ragaller J; Leisinger T; Kertes MA Microbiology (Reading); 1998 May; 144 ( Pt 5)():1375-1386. PubMed ID: 9611812 [TBL] [Abstract][Full Text] [Related]
25. Effects of three environmental variables on sulfate uptake by aerobic bacteria. Monheimer RH Appl Microbiol; 1975 Dec; 30(6):975-81. PubMed ID: 813579 [TBL] [Abstract][Full Text] [Related]
26. Current understanding of sulfur assimilation metabolism to biosynthesize L-cysteine and recent progress of its fermentative overproduction in microorganisms. Kawano Y; Suzuki K; Ohtsu I Appl Microbiol Biotechnol; 2018 Oct; 102(19):8203-8211. PubMed ID: 30046857 [TBL] [Abstract][Full Text] [Related]
27. [Thiosulfate as an intermediate product of bacterial sulfate reduction]. Vaĭnshteĭn MB; Matrosov AG; Baskunov BP; Ziakun AM; Ivanov MV Mikrobiologiia; 1980; 49(6):855-8. PubMed ID: 7207258 [TBL] [Abstract][Full Text] [Related]
28. [Characteristics of the sulfate requirement of propionic acid bacteria]. Charakhch'ian IA; Vorob'eva LI Mikrobiologiia; 1984; 53(1):38-42. PubMed ID: 6708841 [TBL] [Abstract][Full Text] [Related]
29. Sulfate and thiosulfate transport in Escherichia coli K-12: evidence for a functional overlapping of sulfate- and thiosulfate-binding proteins. Sirko A; Zatyka M; Sadowy E; Hulanicka D J Bacteriol; 1995 Jul; 177(14):4134-6. PubMed ID: 7608089 [TBL] [Abstract][Full Text] [Related]
30. Oxidative metabolism of inorganic sulfur compounds by bacteria. Kelly DP; Shergill JK; Lu WP; Wood AP Antonie Van Leeuwenhoek; 1997 Feb; 71(1-2):95-107. PubMed ID: 9049021 [TBL] [Abstract][Full Text] [Related]
31. Regulation of adenosine triphosphate sulfurylase in cultured tobacco cells. Effects of sulfur and nitrogen sources on the formation and decay of the enzyme. Reuveny Z; Filner P J Biol Chem; 1977 Mar; 252(6):1858-64. PubMed ID: 845148 [TBL] [Abstract][Full Text] [Related]
32. Manipulation of thiol contents in plants. Höfgen R; Kreft O; Willmitzer L; Hesse H Amino Acids; 2001; 20(3):291-9. PubMed ID: 11354605 [TBL] [Abstract][Full Text] [Related]
33. The inorganic sulfate transport system of Penicillium chrysogenum. Yamamoto LA; Segel IH Arch Biochem Biophys; 1966 Jun; 114(3):523-38. PubMed ID: 5957709 [No Abstract] [Full Text] [Related]
34. Sulfur metabolism of a mutant of Cephalosporium acremonium with enhanced potential to utilize sulfate for cephalosporin C production. Komatsu KI; Kodaira R J Antibiot (Tokyo); 1977 Mar; 30(3):226-33. PubMed ID: 558969 [TBL] [Abstract][Full Text] [Related]
35. Utilization of sulfur compounds by Streptococcus bovis. PRESCOTT JM J Bacteriol; 1961 Nov; 82(5):724-8. PubMed ID: 14488628 [TBL] [Abstract][Full Text] [Related]
36. Are thiosulfate and trithionate intermediates in dissimilatory sulfate reduction? Chambers LA; Trudinger PA J Bacteriol; 1975 Jul; 123(1):36-40. PubMed ID: 1141200 [TBL] [Abstract][Full Text] [Related]
37. Transport measurements across Caco-2 monolayers of different organic and inorganic selenium: influence of sulfur compounds. Leblondel G; Mauras Y; Cailleux A; Allain P Biol Trace Elem Res; 2001 Dec; 83(3):191-206. PubMed ID: 11794512 [TBL] [Abstract][Full Text] [Related]
38. Studies of Sulfate Utilization by Algae. 7. In vivo Metabolism of Thiosulfate by Chlorella. Hodson RC; Schiff JA; Scarsella AJ Plant Physiol; 1968 Apr; 43(4):570-7. PubMed ID: 16656808 [TBL] [Abstract][Full Text] [Related]
39. Chromate differentially affects the expression of a high-affinity sulfate transporter and isoforms of components of the sulfate assimilatory pathway in Zea mays (L.). Schiavon M; Wirtz M; Borsa P; Quaggiotti S; Hell R; Malagoli M Plant Biol (Stuttg); 2007 Sep; 9(5):662-71. PubMed ID: 17853366 [TBL] [Abstract][Full Text] [Related]
40. Disproportionation of inorganic sulfur compounds by a novel autotrophic bacterium belonging to Nitrospirota. Umezawa K; Kojima H; Kato Y; Fukui M Syst Appl Microbiol; 2020 Sep; 43(5):126110. PubMed ID: 32847785 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]