These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
45. Backbone dynamics of bacteriorhodopsin as studied by (13)C solid-state NMR spectroscopy. Barré P; Yamaguchi S; Saitô H; Huster D Eur Biophys J; 2003 Sep; 32(6):578-84. PubMed ID: 12830331 [TBL] [Abstract][Full Text] [Related]
46. Tyrosine and carboxyl protonation changes in the bacteriorhodopsin photocycle. 1. M412 and L550 intermediates. Roepe P; Ahl PL; Das Gupta SK; Herzfeld J; Rothschild KJ Biochemistry; 1987 Oct; 26(21):6696-707. PubMed ID: 3427038 [TBL] [Abstract][Full Text] [Related]
47. Resonance Raman spectroscopy of chemically modified and isotopically labelled purple membranes. I. A critical examination of the carbon-nitrogen vibrational modes. Ehrenberg B; Lemley AT; Lewis A; von Zastrow M; Crespi HL Biochim Biophys Acta; 1980 Dec; 593(2):441-53. PubMed ID: 7236644 [TBL] [Abstract][Full Text] [Related]
48. Alteration of conformation and dynamics of bacteriorhodopsin induced by protonation of Asp 85 and deprotonation of Schiff base as studied by 13C NMR. Kawase Y; Tanio M; Kira A; Yamaguchi S; Tuzi S; Naito A; Kataoka M; Lanyi JK; Needleman R; Saitô H Biochemistry; 2000 Nov; 39(47):14472-80. PubMed ID: 11087400 [TBL] [Abstract][Full Text] [Related]
49. Electric field effects in bacteriorhodopsin. Shinar R; Druckmann S; Ottolenghi M; Korenstein R Biophys J; 1977 Jul; 19(1):1-5. PubMed ID: 880320 [TBL] [Abstract][Full Text] [Related]
50. Deprotonation of tyrosines in bacteriorhodopsin as studied by Fourier transform infrared spectroscopy with deuterium and nitrate labeling. Lin SL; Ormos P; Eisenstein L; Govindjee R; Konno K; Nakanishi K Biochemistry; 1987 Dec; 26(25):8327-31. PubMed ID: 3442658 [TBL] [Abstract][Full Text] [Related]
51. The structure of an integral membrane peptide: a deuterium NMR study of gramicidin. Prosser RS; Daleman SI; Davis JH Biophys J; 1994 May; 66(5):1415-28. PubMed ID: 7520293 [TBL] [Abstract][Full Text] [Related]
52. Anomalous amide I infrared absorption of purple membrane. Rothschild KJ; Clark NA Science; 1979 Apr; 204(4390):311-2. PubMed ID: 432645 [TBL] [Abstract][Full Text] [Related]
53. Fluorine-19 nuclear magnetic resonance spectroscopic study of fluorophenylalanine- and fluorotryptophan-labeled avian egg white lysozymes. Lian C; Le H; Montez B; Patterson J; Harrell S; Laws D; Matsumura I; Pearson J; Oldfield E Biochemistry; 1994 May; 33(17):5238-45. PubMed ID: 8172898 [TBL] [Abstract][Full Text] [Related]
54. Temperature-dependent conformational change of bacteriorhodopsin as studied by solid-state 13C NMR. Tuzi S; Naito A; Saitô H Eur J Biochem; 1996 Jul; 239(2):294-301. PubMed ID: 8706732 [TBL] [Abstract][Full Text] [Related]
55. [2D-1H-NMR-study of the conformation of transmembrane segments of C, E, and G bacteriorhodopsin]. MaslennikovIV ; Arsen'ev AS; Chikin LD; Kozhich AT; Ivanov VT Bioorg Khim; 1993 Jan; 19(1):5-20. PubMed ID: 8484814 [TBL] [Abstract][Full Text] [Related]
56. Dynamics of the aromatic amino acid residues in the globular conformation of the basic pancreatic trypsin inhibitor (BPTI). II. Semi-empirical energy calculations. Hetzel R; Wüthrich K; Deisenhofer J; Huber R Biophys Struct Mech; 1976 Aug; 2(2):159-80. PubMed ID: 1085644 [TBL] [Abstract][Full Text] [Related]
57. The angles between the C(1)-, C(5)-, and C(9)-methyl bonds of the retinylidene chromophore and the membrane normal increase in the M intermediate of bacteriorhodopsin: direct determination with solid-state (2)H NMR. Moltke S; Wallat I; Sakai N; Nakanishi K; Brown MF; Heyn MP Biochemistry; 1999 Sep; 38(36):11762-72. PubMed ID: 10512633 [TBL] [Abstract][Full Text] [Related]
58. 1H NMR studies at 360 MHz of the aromatic amino acid residues in ferrocytochrome c-552 from Euglena gracilis. Keller RM; Wüthrich K Biochim Biophys Acta; 1977 Apr; 491(2):416-22. PubMed ID: 192308 [TBL] [Abstract][Full Text] [Related]
59. High-resolution 13C NMR study of the topography and dynamics of methionine residues in detergent-solubilized bacteriorhodopsin. Seigneuret M; Neumann JM; Levy D; Rigaud JL Biochemistry; 1991 Apr; 30(16):3885-92. PubMed ID: 2018760 [TBL] [Abstract][Full Text] [Related]
60. Identifying anisotropic constraints in multiply labeled bacteriorhodopsin by 15N MAOSS NMR: a general approach to structural studies of membrane proteins. Mason AJ; Grage SL; Straus SK; Glaubitz C; Watts A Biophys J; 2004 Mar; 86(3):1610-7. PubMed ID: 14990487 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]