These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 7264903)

  • 1. Thermal hardness coefficient of tablets.
    Parrott EL
    J Pharm Sci; 1981 Mar; 70(3):328-9. PubMed ID: 7264903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of the crushing strength of intact tablets using Raman spectroscopy.
    Virtanen S; Antikainen O; Yliruusi J
    Int J Pharm; 2008 Aug; 360(1-2):40-6. PubMed ID: 18513899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predictive evaluation of pharmaceutical properties of direct compression tablets containing theophylline anhydrate during storage at high humidity by near-infrared spectroscopy.
    Otsuka Y; Yamamoto M; Tanaka H; Otsuka M
    Biomed Mater Eng; 2015; 25(3):223-36. PubMed ID: 26407109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel platens to measure the hardness of a pentagonal shaped tablet.
    Malladi J; Sidik K; Wu S; McCann R; Dougherty J; Parab P; Carragher T
    Pharm Dev Technol; 2017 Mar; 22(2):246-255. PubMed ID: 27607150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of accelerated storage conditions affecting physical characteristics, in-vitro dissolution and stability of bioadhesive containing tablets.
    Hosny EA
    Boll Chim Farm; 1999 Jun; 138(6):243-8. PubMed ID: 10464972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of surface color as an expedient QC method for the detection of deviations in tablet hardness.
    Siddiqui A; Nazzal S
    Int J Pharm; 2007 Aug; 341(1-2):173-80. PubMed ID: 17499947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An index for evaluating difficulty of Chewing Index for chewable tablets.
    Gupta A; Chidambaram N; Khan MA
    Drug Dev Ind Pharm; 2015 Feb; 41(2):239-43. PubMed ID: 24252107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism by Which Magnesium Oxide Suppresses Tablet Hardness Reduction during Storage.
    Sakamoto T; Kachi S; Nakamura S; Miki S; Kitajima H; Yuasa H
    Chem Pharm Bull (Tokyo); 2016; 64(9):1256-61. PubMed ID: 27581629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential Use of Magnesium Oxide as an Excipient to Maintain the Hardness of Orally Disintegrating Tablets during Unpackaged Storage.
    Sakamoto T; Kachi S; Nakamura S; Yuasa H
    Chem Pharm Bull (Tokyo); 2019; 67(3):284-288. PubMed ID: 30828006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlating bilayer tablet delamination tendencies to micro-environmental thermodynamic conditions during pan coating.
    Zacour BM; Pandey P; Subramanian G; Gao JZ; Nikfar F
    Drug Dev Ind Pharm; 2014 Jun; 40(6):829-37. PubMed ID: 23638984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydroxypropyl methylcellulose based cephalexin extended release tablets: influence of tablet formulation, hardness and storage on in vitro release kinetics.
    Saravanan M; Sri Nataraj K; Ganesh KS
    Chem Pharm Bull (Tokyo); 2003 Aug; 51(8):978-83. PubMed ID: 12913240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selection of generic preparations of famotidine orally disintegrating tablets for use in unit-dose packages.
    Yamazaki N; Iizuka R; Miyazawa S; Wada Y; Shimokawa K; Ishii F
    Drug Discov Ther; 2012 Oct; 6(5):263-8. PubMed ID: 23229147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of injection moulded matrix tablets based on mixtures of ethylcellulose and low-substituted hydroxypropylcellulose.
    Quinten T; Gonnissen Y; Adriaens E; De Beer T; Cnudde V; Masschaele B; Van Hoorebeke L; Siepmann J; Remon JP; Vervaet C
    Eur J Pharm Sci; 2009 Jun; 37(3-4):207-16. PubMed ID: 19491007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formulation of controlled-release baclofen matrix tablets: influence of some hydrophilic polymers on the release rate and in vitro evaluation.
    Abdelkader H; Abdalla OY; Salem H
    AAPS PharmSciTech; 2007 Nov; 8(4):E100. PubMed ID: 18181521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. INFLUENCE OF MICROCRYSTALLINE CELLULOSE MODIFICATION ON THE PHYSICAL PARAMETERS' STABILITY OF DIRECTLY COMPRESSED PLACEBO TABLETS.
    Skoczen P; Sawicki W; Konkol A
    Acta Pol Pharm; 2017 Jan; 74(1):267-275. PubMed ID: 29474781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aging of tablets made with dibasic calcium phosphate dihydrate as matrix.
    Lausier JM; Chiang CW; Zompa HA; Rhodes CT
    J Pharm Sci; 1977 Nov; 66(11):1636-7. PubMed ID: 915749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of binders in moisture-induced hardness increase in compressed tablets and its effect on in vitro disintegration and dissolution.
    Chowhan ZT
    J Pharm Sci; 1980 Jan; 69(1):1-4. PubMed ID: 7354417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of face centred central composite design to optimise compression force and tablet diameter for the formulation of mechanically strong and fast disintegrating orodispersible tablets.
    Pabari RM; Ramtoola Z
    Int J Pharm; 2012 Jul; 430(1-2):18-25. PubMed ID: 22465631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Instrumentation of a tablet breaking-strength tester.
    Bertermann RE; Adams ME; Warner J; Singleterry M
    J Pharm Sci; 1984 Sep; 73(9):1324-5. PubMed ID: 6491965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Indentation hardness profiles across the faces of some compressed tablets.
    Aulton ME
    Pharm Acta Helv; 1981; 56(4-5):133-6. PubMed ID: 7255500
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.