BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 7264996)

  • 1. A kinetic analysis of the effects of adrenaline on calcium distribution in isolated rat liver parenchymal cells.
    Barritt GJ; Parker JC; Wadsworth JC
    J Physiol; 1981 Mar; 312():29-55. PubMed ID: 7264996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A kinetic investigation of the effects of adrenaline on 45Ca2+ exchange in isolated hepatocytes at different Ca2+ concentrations, at 20 degrees C and in the presence of inhibitors of mitochondrial Ca2+ transport.
    Parker JC; Barritt GJ; Wadsworth JC
    Biochem J; 1983 Oct; 216(1):51-62. PubMed ID: 6651779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of adrenaline on a compartment of slowly-exchangeable calcium in the perfused rat heart.
    Lamont SV; Barritt GJ
    Cardiovasc Res; 1983 Feb; 17(2):88-95. PubMed ID: 6409410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluxes and distribution of calcium in rat liver cells: kinetic analysis and identification of pools.
    Claret-Berthon B; Claret M; Mazet JL
    J Physiol; 1977 Nov; 272(3):529-52. PubMed ID: 412957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for two compartments of exchangeable calcium in isolated rat liver mitochondria obtained using a 45Ca exchange technique in the presence of magnesium, phosphate, and ATPase at 37 degrees C.
    Barritt GJ
    J Membr Biol; 1981; 62(1-2):53-63. PubMed ID: 6168763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium fluxes in mouse mammary tissue in vitro: intracellular and extracellular calcium pools.
    Neville MC; Peaker M
    J Physiol; 1982 Feb; 323():497-517. PubMed ID: 7097584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence that lanthanum ions stimulate calcium inflow to isolated hepatocytes.
    Parker JC; Barritt GJ
    Biochem J; 1981 Oct; 200(1):109-14. PubMed ID: 7332533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium and the action of adrenaline, adenosine triphosphate and carbachol on guinea-pig taenia caeci.
    Den Hertog A
    J Physiol; 1982 Apr; 325():423-39. PubMed ID: 7108782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies on the role of calcium ions in the stimulation by adrenaline of amylase release from rat parotid.
    Dormer RL; Ashcroft SJ
    Biochem J; 1974 Dec; 144(3):543-50. PubMed ID: 4468821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of calcium in insulin action. III. Calcium distribution in fat cells; its kinetics and the effects of adrenaline, insulin and procaine-HCl.
    Kissebah AH; Clarke P; Vydelingum N; Hope-Gill H; Tulloch B; Fraser TR
    Eur J Clin Invest; 1975 Jul; 5(4):339-49. PubMed ID: 1175673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Ca2+-dependent actions of the alpha-adrenergic agonist phenylephrine on hepatic glycogenolysis differ from those of vasopressin and angiotensin.
    Kleineke J; Söling HD
    Eur J Biochem; 1987 Jan; 162(1):143-50. PubMed ID: 3816777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic analysis of calcium distribution in rat anterior pituitary slices.
    Moriarty CM
    Am J Physiol; 1980 Feb; 238(2):E167-73. PubMed ID: 6767411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of manganese, cobalt and calcium on amylase secretion and calcium homeostasis in rat pancreas.
    Argent BE; Case RM; Hirst FC
    J Physiol; 1982 Feb; 323():353-75. PubMed ID: 6178819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Ca2+ ions in the regulation of intramitochondrial metabolism in rat heart. Evidence from studies with isolated mitochondria that adrenaline activates the pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase complexes by increasing the intramitochondrial concentration of Ca2+.
    McCormack JG; Denton RM
    Biochem J; 1984 Feb; 218(1):235-47. PubMed ID: 6424656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence that glucagon acts on the liver to decrease mitochondrial calcium stores.
    Baddams HM; Chang LB; Barritt GJ
    Biochem J; 1983 Jan; 210(1):73-7. PubMed ID: 6405743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium and the alpha-action of catecholamines on guinea-pig taenia caeci.
    Den Hertog A
    J Physiol; 1981 Jul; 316():109-25. PubMed ID: 6275064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of intracellular calcium ions on adrenaline-stimulated adenosine 3':5'-cyclic monophosphate concentrations in pigeon erythrocytes, studied by using the ionophore A23187.
    Campbell AK; Siddle K
    Biochem J; 1976 Aug; 158(2):211-21. PubMed ID: 186033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of sodium gradient manipulation upon cellular calcium, 45Ca fluxes and cellular sodium in the guinea-pig taenia coli.
    Aaronson P; van Breemen C
    J Physiol; 1981; 319():443-61. PubMed ID: 7320922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium compartmentation and exchange rates in primary hepatocyte culture.
    Gish RG; Garcia C; Reedy T; Kaplowitz N; Langer GA
    Anal Biochem; 1990 May; 187(1):187-96. PubMed ID: 2372115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimulation of inositol trisphosphate formation in hepatocytes by vasopressin, adrenaline and angiotensin II and its relationship to changes in cytosolic free Ca2+.
    Charest R; Prpić V; Exton JH; Blackmore PF
    Biochem J; 1985 Apr; 227(1):79-90. PubMed ID: 3873238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.