BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

53 related articles for article (PubMed ID: 7268194)

  • 1. The interaction of a quinone pigment, xanthomegnin, with the mitochondrial respiratory chain.
    Kawai K; Cowger ML
    Res Commun Chem Pathol Pharmacol; 1981 Jun; 32(3):499-514. PubMed ID: 7268194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Respiratory chain of the lung fluke Paragonimus westermani: facultative anaerobic mitochondria.
    Takamiya S; Wang H; Hiraishi A; Yu Y; Hamajima F; Aoki T
    Arch Biochem Biophys; 1994 Jul; 312(1):142-50. PubMed ID: 8031121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disappearance of the cyanide-insensitive pathway of oxidation in mitochondria of MI-1 mutant of Neurospora crassa in vitro.
    Drabikowska AK
    Acta Biochim Pol; 1978; 25(1):71-80. PubMed ID: 208334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical studies of pigments from a pathogenic fungus; Microsporum cookei. VI. Formation of a xanthomegnin-bypass to the mitochondrial electron transport system.
    Kawai K; Nozawa Y
    Experientia; 1979 Jun; 35(6):721-2. PubMed ID: 223869
    [No Abstract]   [Full Text] [Related]  

  • 5. Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles.
    Panov AV; Scaduto RC
    Arch Biochem Biophys; 1995 Feb; 316(2):815-20. PubMed ID: 7864638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porin and cytochrome oxidase containing contact sites involved in the oxidation of cytosolic NADH.
    La Piana G; Marzulli D; Gorgoglione V; Lofrumento NE
    Arch Biochem Biophys; 2005 Apr; 436(1):91-100. PubMed ID: 15752713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Superoxide formation and lipid peroxidation by the mitochondrial electron-transfer chain].
    Takeshige K
    Rinsho Shinkeigaku; 1994 Dec; 34(12):1269-71. PubMed ID: 7774132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Rotenone-insensitive NADH oxydation in mitochondrial suspension occurs by NADH dehydrogenase of respiratory chain fragments].
    Sharova IV; Vekshin NL
    Biofizika; 2004; 49(5):814-21. PubMed ID: 15526465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aminoethylcysteine ketimine decarboxylated dimer inhibits mitochondrial respiration by impairing electron transport at complex I level.
    Pecci L; Montefoschi G; Fontana M; Cavallini D
    Biochem Biophys Res Commun; 1994 Mar; 199(2):755-60. PubMed ID: 8135820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impaired energy metabolism in hearts of septic baboons: diminished activities of Complex I and Complex II of the mitochondrial respiratory chain.
    Gellerich FN; Trumbeckaite S; Hertel K; Zierz S; Müller-Werdan U; Werdan K; Redl H; Schlag G
    Shock; 1999 May; 11(5):336-41. PubMed ID: 10353539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Participation of the quinone acceptor in the transition of complex I from an inactive to active state].
    Maklashina EO; Vinogradov AD
    Biokhimiia; 1994 Nov; 59(11):1638-45. PubMed ID: 7873673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Steady-state kinetics of the reduction of coenzyme Q analogs by complex I (NADH:ubiquinone oxidoreductase) in bovine heart mitochondria and submitochondrial particles.
    Fato R; Estornell E; Di Bernardo S; Pallotti F; Parenti Castelli G; Lenaz G
    Biochemistry; 1996 Feb; 35(8):2705-16. PubMed ID: 8611577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The existence of a lysosomal redox chain and the role of ubiquinone.
    Gille L; Nohl H
    Arch Biochem Biophys; 2000 Mar; 375(2):347-54. PubMed ID: 10700391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromium(VI) interaction with plant and animal mitochondrial bioenergetics: a comparative study.
    Fernandes MA; Santos MS; Alpoim MC; Madeira VM; Vicente JA
    J Biochem Mol Toxicol; 2002; 16(2):53-63. PubMed ID: 11979422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical studies of pigments from a pathogenic fungus Microsporum cookei. III. Comparison of the effects of xanthomegnin and O-methylxanthomegnin on the oxidative phosphorylation of rat liver mitochondria.
    Kawai K; Akita T; Nishibe S; Nozawa Y; Ogihara Y; Ito Y
    J Biochem; 1976 Jan; 79(1):145-52. PubMed ID: 939756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The interaction of rubroskyrin, a modified bis-anthraquinone pigment fromPenicillium islandicum Sopp, with respiratory chain of liver mitochondria.
    Mori S; Kawai K; Nozawa Y; Ogihara Y
    Mycotoxin Res; 1997 Mar; 13(1):35-42. PubMed ID: 23604736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction of respiratory-chain cytochrome b by lactate in Saccharomyces cerevisiae.
    Briquet M; Purnelle B; Beattie DS; Goffeau A
    Eur J Biochem; 1982 Oct; 127(2):339-42. PubMed ID: 6754378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectrophotometric study of the interaction of xanthomegnin with serum albumin.
    Kawai K; Cowger ML
    Res Commun Chem Pathol Pharmacol; 1982 Mar; 35(3):499-513. PubMed ID: 7079576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 2D-PAGE examination of mRNA populations from Penicillium freii mutants deficient in xanthomegnin biosynthesis.
    Nicolaisen M; Sandal T; Frisvad JC; Rossen L
    Microbiol Res; 1996 Aug; 151(3):285-90. PubMed ID: 8817920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and some properties of submitochondrial particles from tightly coupled mung bean mitochondria.
    Wilson SB; Bonner WD
    Plant Physiol; 1970 Jul; 46(1):25-30. PubMed ID: 16657416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.