These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Inhibition of cerebral oxygen and glucose consumption in the dog by hypothermia, pentobarbital, and lidocaine. Astrup J; Sørensen PM; Sørensen HR Anesthesiology; 1981 Sep; 55(3):263-8. PubMed ID: 7270951 [TBL] [Abstract][Full Text] [Related]
4. Energy-requiring cell functions in the ischemic brain. Their critical supply and possible inhibition in protective therapy. Astrup J J Neurosurg; 1982 Apr; 56(4):482-97. PubMed ID: 6278105 [No Abstract] [Full Text] [Related]
5. Temporal profile of changes in brain tissue extracellular space and extracellular ion (Na(+), K(+)) concentrations after cerebral ischemia and the effects of mild cerebral hypothermia. Mori K; Miyazaki M; Iwase H; Maeda M J Neurotrauma; 2002 Oct; 19(10):1261-70. PubMed ID: 12427333 [TBL] [Abstract][Full Text] [Related]
6. Pharmacologic EEG suppression during cardiopulmonary bypass: cerebral hemodynamic and metabolic effects of thiopental or isoflurane during hypothermia and normothermia. Woodcock TE; Murkin JM; Farrar JK; Tweed WA; Guiraudon GM; McKenzie FN Anesthesiology; 1987 Aug; 67(2):218-24. PubMed ID: 3605748 [TBL] [Abstract][Full Text] [Related]
8. Thiopental as an adjunct to hypothermia for EEG suppression in infants prior to circulatory arrest. Rung GW; Wickey GS; Myers JL; Salus JE; Hensley FA; Martin DE J Cardiothorac Vasc Anesth; 1991 Aug; 5(4):337-42. PubMed ID: 1873512 [TBL] [Abstract][Full Text] [Related]
9. The effect of hypothermic cardiopulmonary bypass and total circulatory arrest on cerebral metabolism in neonates, infants, and children. Greeley WJ; Kern FH; Ungerleider RM; Boyd JL; Quill T; Smith LR; Baldwin B; Reves JG J Thorac Cardiovasc Surg; 1991 May; 101(5):783-94. PubMed ID: 2023435 [TBL] [Abstract][Full Text] [Related]
10. Effect of lidocaine on improving cerebral protection provided by retrograde cerebral perfusion: a neuropathologic study. Wang D; Wu X; Zhong Y; Zhou Y; Shan G; Hu X; Li J; Liu Y; Qin X; Xia Z J Cardiothorac Vasc Anesth; 1999 Apr; 13(2):176-80. PubMed ID: 10230952 [TBL] [Abstract][Full Text] [Related]
11. Cerebral blood flow does not mediate the effect of brain temperature on recovery of extracellular potassium ion activity after transient focal ischemia in the rat. Sick TJ; Tang R; Pérez-Pinzón MA Brain Res; 1999 Mar; 821(2):400-6. PubMed ID: 10064827 [TBL] [Abstract][Full Text] [Related]
12. Changes during ischaemia in extracellular potassium ion concentration of the brain under nitrous oxide or hexobarbital-sodium anaesthesia and moderate hypothermia. Lantos J; Temes G; Török B Acta Physiol Hung; 1986; 67(1):141-53. PubMed ID: 3705976 [TBL] [Abstract][Full Text] [Related]
13. Cardiopulmonary effects of thiopental/lidocaine combination during anesthetic induction in the dog. Rawlings CA; Kolata RJ Am J Vet Res; 1983 Jan; 44(1):144-9. PubMed ID: 6824218 [TBL] [Abstract][Full Text] [Related]
14. Cerebral anoxia: effect of deep hypothermia and pH. Norwood WI; Norwood CR; Castaneda AR Surgery; 1979 Aug; 86(2):203-9. PubMed ID: 37607 [TBL] [Abstract][Full Text] [Related]
15. [Effects of lidocaine and thiopental on the neuronal injury in rat hippocampus slice cultures]. Cao H; Li J; Wang J; Duan SM; Zeng YM Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2003 Aug; 19(3):245-8. PubMed ID: 21189587 [TBL] [Abstract][Full Text] [Related]
16. Lidocaine improving the cerebral protection by retrograde cerebral perfusion. Wang D; Wu X; Zhou Y; Shan G; Hu X; Li J; Liu Y; Qin X; Wang G; Xia Z Chin Med J (Engl); 1998 Oct; 111(10):885-90. PubMed ID: 11189232 [TBL] [Abstract][Full Text] [Related]
17. The increase in extracellular potassium concentration in the ischemic brain in relation to the preischemic functional activity and cerebral metabolic rate. Astrup J; Rehncrona S; Siesjö BK Brain Res; 1980 Oct; 199(1):161-74. PubMed ID: 7407619 [TBL] [Abstract][Full Text] [Related]
18. Hypothermic modulation of cerebral ischemic injury during cardiopulmonary bypass in pigs. Conroy BP; Lin CY; Jenkins LW; DeWitt DS; Zornow MH; Uchida T; Johnston WE Anesthesiology; 1998 Feb; 88(2):390-402. PubMed ID: 9477060 [TBL] [Abstract][Full Text] [Related]
19. Mild and moderate hypothermia provide better protection than a burst-suppression dose of thiopental against ischemic spinal cord injury in rabbits. Matsumoto M; Iida Y; Sakabe T; Sano T; Ishikawa T; Nakakimura K Anesthesiology; 1997 May; 86(5):1120-7. PubMed ID: 9158362 [TBL] [Abstract][Full Text] [Related]
20. Profound hypothermia (less than 10 degrees C) compared with deep hypothermia (15 degrees C) improves neurologic outcome in dogs after two hours' circulatory arrest induced to enable resuscitative surgery. Tisherman SA; Safar P; Radovsky A; Peitzman A; Marrone G; Kuboyama K; Weinrauch V J Trauma; 1991 Aug; 31(8):1051-61; discussion 1061-2. PubMed ID: 1875431 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]