BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 7271587)

  • 1. On the overload effect of sound impulses to the inner ear.
    Wagner H; Berndt H
    Arch Otorhinolaryngol; 1981; 232(2):179-85. PubMed ID: 7271587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Some new aspects on damages in the organ of Corti after pure tone exposure.
    Ritter J; Anniko M; Gerhardt HJ
    Arch Otorhinolaryngol; 1981; 232(2):187-97. PubMed ID: 7271588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in cochlear microphonic and neural sensitivity produced by acoustic trauma.
    Patuzzi RB; Yates GK; Johnstone BM
    Hear Res; 1989 May; 39(1-2):189-202. PubMed ID: 2737965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The importance of "temporal pattern" in traumatic impulse noise exposures.
    Danielson R; Henderson D; Gratton MA; Bianchi L; Salvi R
    J Acoust Soc Am; 1991 Jul; 90(1):209-18. PubMed ID: 1880291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined electrophysiology and ultrastructure of acoustic trauma in the guinea pig cochlea.
    Robertson D
    Arch Otorhinolaryngol; 1981; 230(3):257-63. PubMed ID: 7271570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applying Neurotrophins to the Round Window Rescues Auditory Function and Reduces Inner Hair Cell Synaptopathy After Noise-induced Hearing Loss.
    Sly DJ; Campbell L; Uschakov A; Saief ST; Lam M; O'Leary SJ
    Otol Neurotol; 2016 Oct; 37(9):1223-30. PubMed ID: 27631825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of hearing sensitivity on mechano-electric transduction.
    Chertoff ME; Yi X; Lichtenhan JT
    J Acoust Soc Am; 2003 Dec; 114(6 Pt 1):3251-63. PubMed ID: 14714806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of body temperature on the set-up and recovery of noise-induced cochlea damage.
    Berndt H; Wagner H
    Arch Otorhinolaryngol; 1981; 232(2):199-202. PubMed ID: 7271589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of direct current on dc receptor potentials from cochlear inner hair cells in the guinea pig.
    Nuttall AL
    J Acoust Soc Am; 1985 Jan; 77(1):165-75. PubMed ID: 3973211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variability of noise-induced damage in the guinea pig cochlea: electrophysiological and morphological correlates after strictly controlled exposures.
    Cody AR; Robertson D
    Hear Res; 1983 Jan; 9(1):55-70. PubMed ID: 6826468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Sound pressure isopotential levels for the microphonic potential of the internal ear].
    Tokarev OP; Kruglov AV
    Fiziol Zh SSSR Im I M Sechenova; 1984 Mar; 70(3):306-10. PubMed ID: 6724039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation at the guinea pig round window of summating potentials and compound action potentials by low-frequency sound.
    Klis JF; Smoorenburg GF
    Hear Res; 1985; 20(1):15-23. PubMed ID: 4077742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The origin of the low-frequency microphonic in the first cochlear turn of guinea-pig.
    Patuzzi RB; Yates GK; Johnstone BM
    Hear Res; 1989 May; 39(1-2):177-88. PubMed ID: 2737964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of peak pressure and energy of impulses.
    Patterson JH
    J Acoust Soc Am; 1991 Jul; 90(1):205-8. PubMed ID: 1880290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The energy spectrum of an impulse: its relation to hearing loss.
    Hamernik RP; Ahroon WA; Hsueh KD
    J Acoust Soc Am; 1991 Jul; 90(1):197-204. PubMed ID: 1880289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustically induced hearing loss: intracellular studies in the guinea pig cochlea.
    Cody AR; Russell IJ
    Hear Res; 1988 Sep; 35(1):59-70. PubMed ID: 3182410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Riluzole rescues cochlear sensory cells from acoustic trauma in the guinea-pig.
    Wang J; Dib M; Lenoir M; Vago P; Eybalin M; Hameg A; Pujol R; Puel JL
    Neuroscience; 2002; 111(3):635-48. PubMed ID: 12031350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphological correlates of hearing loss after cochlear implantation and electro-acoustic stimulation in a hearing-impaired Guinea pig model.
    Reiss LA; Stark G; Nguyen-Huynh AT; Spear KA; Zhang H; Tanaka C; Li H
    Hear Res; 2015 Sep; 327():163-74. PubMed ID: 26087114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variations of cochlear microphonic potential after sectioning efferent fibers to the cochlea.
    Bonfils P; Remond MC; Pujol R
    Hear Res; 1987; 30(2-3):267-71. PubMed ID: 3680069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Comparison of methods for early detection of noise vulnerability of the inner ear. Amplitude reduction of otoacoustic emissions are most sensitive at submaximal noise impulse exposure].
    Plinkert PK; Hemmert W; Zenner HP
    HNO; 1995 Feb; 43(2):89-97. PubMed ID: 7713771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.