These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 7271587)

  • 21. A comparative study on the effect of pure-tone exposure of the guinea pig cochlea.
    Hotta S; Sugisawa T; Itoh T; Hasebe M; Yamamura K
    Eur Arch Otorhinolaryngol; 1996; 253(1-2):45-51. PubMed ID: 8932430
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [The frequency spectrum in the interaction between continuous and impulse noise: an anatomic functional evaluation].
    Roberto M; Zito F; Hamernik R; Ahroon B
    Acta Otorhinolaryngol Ital; 1993; 13(5):387-98. PubMed ID: 8165890
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single-neuron labeling and chronic cochlear pathology. IV. Stereocilia damage and alterations in rate- and phase-level functions.
    Liberman MC; Kiang NY
    Hear Res; 1984 Oct; 16(1):75-90. PubMed ID: 6511674
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Temporary change of compound action potential amplitude after intense sound exposure.
    Homma T; Hasegawa M; Okamoto A; Yokoyama K; Tamura T
    ORL J Otorhinolaryngol Relat Spec; 1994; 56(1):19-23. PubMed ID: 8121679
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impulse noise: some definitions, physical acoustics and other considerations.
    Hamernik RP; Hsueh KD
    J Acoust Soc Am; 1991 Jul; 90(1):189-96. PubMed ID: 1880288
    [No Abstract]   [Full Text] [Related]  

  • 26. Effects of lifetime noise exposure on the middle-age human auditory brainstem response, tinnitus and speech-in-noise intelligibility.
    Valderrama JT; Beach EF; Yeend I; Sharma M; Van Dun B; Dillon H
    Hear Res; 2018 Aug; 365():36-48. PubMed ID: 29913342
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modifications of the nonlinearity of the cochlear microphonic responses produced by noise exposure in the guinea pig.
    Legouix JP; Joannès M
    Hear Res; 1984 Apr; 14(1):39-44. PubMed ID: 6746420
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Histopathological differences between temporary and permanent threshold shift.
    Nordmann AS; Bohne BA; Harding GW
    Hear Res; 2000 Jan; 139(1-2):13-30. PubMed ID: 10601709
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects on guinea pig cochlea from exposure to moderately intense broad-band noise.
    Stopp PE
    Hear Res; 1983 Jul; 11(1):55-72. PubMed ID: 6885648
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The influence of moderate-intensity noise on the compound action potential evoked by tone bursts in the guinea pig, Cavia porcellus.
    Walger M; Schmidt U; von Wedel H
    Hear Res; 1985; 19(2):143-9. PubMed ID: 4055533
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Automatic monitoring of mechano-electrical transduction in the guinea pig cochlea.
    Patuzzi R; Moleirinho A
    Hear Res; 1998 Nov; 125(1-2):1-16. PubMed ID: 9833960
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrical stimulation of the ear: experimental studies.
    Aran JM; Wu ZY; Charlet de Sauvage R; Cazals Y; Portmann M
    Ann Otol Rhinol Laryngol; 1983; 92(6 Pt 1):614-20. PubMed ID: 6660752
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modulation of cochlear responses in the guinea pig by low-frequency, phase-shifted maskers following noise trauma.
    Hoehmann D; Müller S; Dornhoffer JL
    Eur Arch Otorhinolaryngol; 1995; 252(1):S20-5. PubMed ID: 7718220
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Developmental changes in frequency mapping of the gerbil cochlea: comparison of two cochlear locations.
    Arjmand E; Harris D; Dallos P
    Hear Res; 1988 Jan; 32(1):93-6. PubMed ID: 3350777
    [TBL] [Abstract][Full Text] [Related]  

  • 35. What is the cochlear place code for pitch?
    Zwislocki JJ
    Acta Otolaryngol; 1991; 111(2):256-62. PubMed ID: 2068911
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of infrasound on cochlear damage from exposure to a 4 kHz octave band of noise.
    Harding GW; Bohne BA; Lee SC; Salt AN
    Hear Res; 2007 Mar; 225(1-2):128-38. PubMed ID: 17300889
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Morphology, synaptology and electrophysiology of the developing cochlea.
    Pujol R
    Acta Otolaryngol Suppl; 1985; 421():5-9. PubMed ID: 3862330
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Voltage-dependent elements are involved in the generation of the cochlear microphonic and the sound-induced resistance changes measured in scala media of the guinea pig.
    Mountain DC; Hubbard AE; Geisler CD
    Hear Res; 1980 Oct; 3(3):215-29. PubMed ID: 7440425
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cochlear de-efferentation and impulse noise-induced acoustic trauma in the chinchilla.
    Zheng XY; McFadden SL; Ding DL; Henderson D
    Hear Res; 2000 Jun; 144(1-2):187-95. PubMed ID: 10831877
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The structural and functional consequences of acoustic injury in the cochlea and peripheral auditory system: a five year update.
    Saunders JC; Cohen YE; Szymko YM
    J Acoust Soc Am; 1991 Jul; 90(1):136-46. PubMed ID: 1880281
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.