These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 7271786)

  • 1. A 31P NMR study of phosphoenolpyruvate transport across the human erythrocyte membrane.
    Hamasaki N; Wyrwicz AM; Lubansky JH; Omachi A
    Biochem Biophys Res Commun; 1981 May; 100(2):879-87. PubMed ID: 7271786
    [No Abstract]   [Full Text] [Related]  

  • 2. Effects of inorganic and organic anions on the transport of phosphoenol-pyruvate across the erythrocyte membrane.
    Hamasaki N; Matsuyama H; Hirota-Chigita C; Nanri H
    Tokai J Exp Clin Med; 1982; 7 Suppl():113-9. PubMed ID: 7186217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 2,3-Bisphosphoglycerate inhibits the transport of phosphoenolpyruvate across the erythrocyte membrane.
    Hamasaki N
    Biochem Biophys Res Commun; 1984 Jul; 122(2):609-12. PubMed ID: 6466329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of phosphoenolpyruvate transport across the erythrocyte membrane. Evidence for involvement of band 3 in the transport system.
    Hamasaki N; Matsuyama H; Hirota-Chigita C
    Eur J Biochem; 1983 May; 132(3):531-6. PubMed ID: 6852012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport of phosphoenolpyruvate through the erythrocyte membrane.
    Hamasaki N; Hardjono IS; Minakami S
    Biochem J; 1978 Jan; 170(1):39-46. PubMed ID: 629781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The active center of transport for phosphoenolpyruvate and inorganic phosphate in the human erythrocyte membrane.
    Hamasaki N; Kawano Y; Inoue H
    Biomed Biochim Acta; 1987; 46(2-3):S51-4. PubMed ID: 3593317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of a histidine residue in inorganic phosphate and phosphoenolpyruvate transport across the human erythrocyte membrane.
    Matsuyama H; Kawano Y; Hamasaki N
    J Biochem; 1986 Feb; 99(2):495-501. PubMed ID: 3700362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regeneration of 2,3-bisphosphoglycerate and ATP in stored erythrocytes by phosphoenolpyruvate: a new preservative for blood storage.
    Hamasaki N; Ideguchi H; Ikehara Y
    Transfusion; 1981; 21(4):391-6. PubMed ID: 7268864
    [No Abstract]   [Full Text] [Related]  

  • 9. [31P-NMR study of kinetics of 2,3-diphosphoglycerate degradation in human erythrocytes during their depletion].
    Ataullakhanov FI; Vitvitskiĭ VM; Dubinskaia EI; Dubinskiĭ VZ
    Biokhimiia; 1985 Aug; 50(8):1319-22. PubMed ID: 4074797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multinuclear NMR study of 2,3-bisphosphoglycerate metabolism in the human erythrocyte.
    Oxley ST; Porteous R; Brindle KM; Boyd J; Campbell ID
    Biochim Biophys Acta; 1984 Sep; 805(1):19-24. PubMed ID: 6477971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uphill and selective transport of phosphoenolpyruvate through red cell membrane.
    Hamasaki N; Harasaki H; Tomoda A; Minakami S
    Acta Biol Med Ger; 1977; 36(5-6):913-8. PubMed ID: 23641
    [No Abstract]   [Full Text] [Related]  

  • 12. Metabolism of 3-phosphoglyceroyl phosphate in phosphoenolpyruvate-enriched human erythrocytes.
    Inoue H; Moriyasu M; Hamasaki N
    J Biol Chem; 1987 Jun; 262(16):7635-8. PubMed ID: 3584133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane mediated link between ion transport and metabolism in human red cells.
    Fossel ET; Solomon AK
    Biochim Biophys Acta; 1977 Jan; 464(1):82-92. PubMed ID: 831795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rejuvenation of aged erythrocytes by incorporating phosphoenolpyruvate into the cells.
    Hamasaki N; Minakami S; Ideguchi H; Ikehara Y
    Acta Biol Med Ger; 1981; 40(4-5):691-7. PubMed ID: 7315116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of 2,3-diphosphoglycerate 31P-NMR resonance positions by red cell membrane shape.
    Fossel ET; Solomon AK
    Biochim Biophys Acta; 1976 Jun; 436(2):505-11. PubMed ID: 1276226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 31P-NMR measurements of ATP, ADP, 2,3-diphosphoglycerate and Mg2+ in human erythrocytes.
    Petersen A; Kristensen SR; Jacobsen JP; Hørder M
    Biochim Biophys Acta; 1990 Aug; 1035(2):169-74. PubMed ID: 2393665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ouabain-sensitive interaction between human red cell membrane and glycolytic enzyme complex in cytosol.
    Fossel ET; Solomon AK
    Biochim Biophys Acta; 1978 Jun; 510(1):99-111. PubMed ID: 667039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-resolution NMR studies of transmembrane cation transport in uremic patients.
    Monti JP; Baz M; Elsen R; Berland YF; Crevat AD
    Biochim Biophys Acta; 1990 Aug; 1027(1):31-40. PubMed ID: 2168751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Study of erythrocyte metabolism using 31P NMR-spectroscopy].
    Cernay P; Gajdos M; Zalibera L; Golier I
    Bratisl Lek Listy; 1986 Sep; 86(3):273-80. PubMed ID: 3756559
    [No Abstract]   [Full Text] [Related]  

  • 20. Quantitative IHP determination by 31P-NMR: proposal for a standardized protocol.
    Nano R; Mosca A; Paleari R; Boicelli A
    Adv Exp Med Biol; 1992; 326():35-9. PubMed ID: 1295323
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.