These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 7271799)

  • 1. Tryptophan fluorescence of human hemoglobin. I. Significant change of fluorescence intensity and lifetimes in the T - R transition.
    Itoh M; Mizukoshi H; Fuke K; Matsukawa S; Mawatari K; Yoneyama Y; Sumitani M; Yoshihara K
    Biochem Biophys Res Commun; 1981 Jun; 100(3):1259-65. PubMed ID: 7271799
    [No Abstract]   [Full Text] [Related]  

  • 2. Tryptophan fluorescence of human hemoglobin. II. Effect of inositol hexaphosphate on the T-R transition.
    Mizukoshi H; Itoh M; Matsukawa S; Mawatari K; Yoneyama Y
    Biochim Biophys Acta; 1982 Jan; 700(2):143-7. PubMed ID: 7055577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational studies of hemoglobins using intrinsic fluorescence measurements.
    Hirsch RE; Nagel RL
    J Biol Chem; 1981 Feb; 256(3):1080-3. PubMed ID: 7451490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tryptophan emission from human hemoglobin and its isolated subunits.
    Alpert B; Jameson DM; Weber G
    Photochem Photobiol; 1980 Jan; 31(1):1-4. PubMed ID: 7367467
    [No Abstract]   [Full Text] [Related]  

  • 5. Resolution of the lifetimes and correlation times of the intrinsic tryptophan fluorescence of human hemoglobin solutions using 2 GHz frequency-domain fluorometry.
    Bucci E; Malak H; Fronticelli C; Gryczynski I; Lakowicz JR
    J Biol Chem; 1988 May; 263(15):6972-7. PubMed ID: 3366762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The detection of hemoglobin dimers by intrinsic fluorescence.
    Hirsch RE; Squires NA; Discepola C; Nagel RL
    Biochem Biophys Res Commun; 1983 Oct; 116(2):712-8. PubMed ID: 6651833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rates of energy transfer between tryptophans and hemes in hemoglobin, assuming that the heme is a planar oscillator.
    Gryczynski Z; Tenenholz T; Bucci E
    Biophys J; 1992 Sep; 63(3):648-53. PubMed ID: 1420905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of substitutions of lysine and aspartic acid for asparagine at beta 108 and of tryptophan for valine at alpha 96 on the structural and functional properties of human normal adult hemoglobin: roles of alpha 1 beta 1 and alpha 1 beta 2 subunit interfaces in the cooperative oxygenation process.
    Tsai CH; Shen TJ; Ho NT; Ho C
    Biochemistry; 1999 Jul; 38(27):8751-61. PubMed ID: 10393550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effect of benzodiazepines on the fluorescence of tryptophan in human serum albumin, hemoglobin and erythrocyte ghosts].
    Terhaag B; Ackermann E
    Acta Biol Med Ger; 1978; 37(3):387-91. PubMed ID: 735610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Circular dichroism as a probe of the allosteric R in equilibrium T transformation in hemoglobins and modified hemoglobins.
    Plese CF; Amma EL
    Biochem Biophys Res Commun; 1977 Jun; 76(3):691-7. PubMed ID: 20079
    [No Abstract]   [Full Text] [Related]  

  • 11. Allosteric mechanism deduced from the analysis of the variation of structure and function of abnormal hemoglobins.
    Matsukawa S; Mawatari K; Shimokawa Y; Takeda Y; Yoneyama Y; Itoh M; Kurokawa H; Kitagawa T
    Nihon Ketsueki Gakkai Zasshi; 1985 Dec; 48(8):2002-14. PubMed ID: 3915415
    [No Abstract]   [Full Text] [Related]  

  • 12. Intrinsic fluorescence emission of intact oxy hemoglobins.
    Hirsch RE; Zukin RS; Nagel RL
    Biochem Biophys Res Commun; 1980 Mar; 93(2):432-9. PubMed ID: 6155908
    [No Abstract]   [Full Text] [Related]  

  • 13. Fluorescence studies of internal rotation in apohemoglobin alpha-chains.
    Oton J; Franchi D; Steiner RF; Martinez CF; Bucci E
    Arch Biochem Biophys; 1984 Feb; 228(2):519-24. PubMed ID: 6696445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alteration of tryptophan fluorescence properties upon dissociation of Lumbricus terrestris hemoglobin.
    Hirsch RE; Vidugiris GJ; Friedman JM; Harrington JP
    Biochim Biophys Acta; 1994 Apr; 1205(2):248-51. PubMed ID: 8155704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrinsic fluorescence of carp hemoglobin: a study of the R----T transition.
    Hirsch RE; Noble RW
    Biochim Biophys Acta; 1987 Aug; 914(3):213-9. PubMed ID: 3620472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of optical properties of hemoglobins in terms of the two-state model, especially from studies on abnormal hemoglobins with amino acid substitution in the alpha 1 beta 2 contact region.
    Matsukawa S; Nishibu M; Nagai M; Mawatari K; Yoneyama Y
    J Biol Chem; 1979 Apr; 254(7):2358-63. PubMed ID: 429289
    [No Abstract]   [Full Text] [Related]  

  • 17. A model for multiexponential tryptophan fluorescence intensity decay in proteins.
    Bajzer Z; Prendergast FG
    Biophys J; 1993 Dec; 65(6):2313-23. PubMed ID: 8312471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence of proteins induced by two-photon absorption.
    Xu YW; Zhang JR; Deng YM; Hui LK; Jiang SP; Lian SH
    J Photochem Photobiol B; 1987 Dec; 1(2):223-7. PubMed ID: 3149985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Refolding defects in hemoglobin Rothschild.
    Craik CS; Vallette I; Beychok S; Waks M
    J Biol Chem; 1980 Jul; 255(13):6219-23. PubMed ID: 7391018
    [No Abstract]   [Full Text] [Related]  

  • 20. Tryptophan-heme energy transfer in human hemoglobin: dependence upon the state of the iron.
    Fontaine MP; Jameson DM; Alpert B
    FEBS Lett; 1980 Jul; 116(2):310-4. PubMed ID: 7409153
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.